
Contents Page

Foreword ... iv

Introduction ... v

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 2

4 The role of declarative document architectures ... 2

5 Defining a document fragment template ... 2

6 Reusing document architectures ... 3
6.1 Reassigning element and attribute names .. 3
6.2 Remapping entity references .. 4
6.3 Renaming Parameter Entity Targets .. 4

7 Removing elements and attributes from specific locations within a document model 5

Annex A (normative) Validation of declarative document architecures ... 6
A.1 RELAX NG XML Schema for Validating Declarative Document Architectures 6
A.2 RELAX NG Compact Schema for Validating Declarative Document Architectures 6
A.3 Schematron Rules for Validating Declarative Document Architectures ... 6

Annex B (informative) Using XSLT to generate XForms .. 7

Bibliography .. 8

iii© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards through technical committees established by the respective organization
to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

ISO/IEC 19757-8 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee
SC 34, Document Description and Processing Languages.

ISO/IEC 19757 consists of the following parts, under the general title Document Schema Definition Languages (DSDL):

— Part 1: Overview

— Part 2: Regular-grammar-based validation — RELAX NG

— Part 3: Rule-based validation — Schematron

— Part 4: Namespace-based validaiton dispatching language — NVDL

— Part 5: Datatypes

— Part 6: Path-based integrity constraints

— Part 7: Character repertoire validation

— Part 8: Declarative document architectures

— Part 9: Datatype- and namespace-aware DTDs

— Part 10: Validation management

iv © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Introduction

This International Standard defines a set of Document Schema Definition Languages (DSDL) that can be used to
specify one or more validation processes performed against Extensible Stylesheet Language (XML) or Standard
Generalized Markup Language (SGML) documents. (XML is an application profile SGML ISO 8879:1986.)

A document model is an expression of the constraints to be placed on the structure and content of documents to be
validated with the model. A number of technologies have been developed through various formal and informal consortia
since the development of Document Type Definitions (DTDs) as part of ISO 8879, notably by the World Wide Web
Consortium (W3C) and the Organization for the Advancement of Structured Information Standards (OASIS). A number
of validation technologies are standardized in DSDL to complement those already available as standards or from
industry.

To validate that a structured document conforms to specified constraints in structure and content relieves the potentially
many applications acting on the document from having to duplicate the task of confirming that such requirements
have been met. Historically, such tasks and expressions have been developed and utilized in isolation, without
consideration for how the features and functionality available in other technologies might enhance validation objectives.

The main objective of this International Standard is to bring together different validation-related tasks and expressions
to form a single extensible framework that allows technologies to work in series or in parallel to produce a single or
a set of validation results. The extensibility of DSDL accommodates validation technologies not yet designed or
specified.

In the past, different design and use criteria have led users to choose different validation technologies for different
portions of their information. Bringing together information within a single XML document sometimes prevents existing
document models from being used to validate sections of data. By providing an integrated suite of constraint description
languages that can be applied to different subsets of a single XML document, this International Standard allows
different validation technologies to be integrated under a well-defined validation policy.

This multi-part International Standard integrates constraint description technologies into a suite that:

— provides user control of names, order and repeatability of information objects (elements)

— allows users to identify restrictions on the co-concurrence of elements and element contents

— allows specific subsets of structured documents to be validated

— allows restrictions to be placed on the contents of specific elements, including restrictions based on the content
of other elements in the same document

— allows the character set that can be used within specific elements to be managed, based on the application of
the ISO/IEC 10646 Universal Multiple-Octet Coded Character Set (UCS)

— allows default values to be assigned to element contents and attribute values, and provides facilities for the
incorporation of predefined fragments of structured data to be incorporated within documents

— allows SGML to be used to declare document structure constraints that extend DTDs to include functions such
as namespace-controlled validation and datatypes.

v© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

vi © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Document Schema Definition Languages (DSDL) — Part 8: Declarative
document architectures

1 Scope

Declarative document architectures provide templates that can be used to define the structure and/or content of
predefined parts of document streams.

NOTE 1: Templates created using declarative docucment architectures are similar in purpose to abstract classes.

Declarative document architectures also allow default values to be assigned to specific parts of a data stream. This
includes mechanisms for defining standard sequences of data that can be incorporated into document instances by
reference to an identifying name, the provision of default content for elements and attributes for which no value is
provided, and the matching of local element and attribute names to those used in a specific schema.

This Part provides a syntax for:

— using XPath to address elements and attributes to be modified

— assigning a default value to the contents of a specific type of element or attribute

— defining named fragments of predefined data elements that can included within a document instance

— renaming elements, attributes, entities and processing instructions in specific locations within the document
model, including the assignment of element or attribute names to different namespaces

— the definition of replacement contents for specific elements or attributes

— removing elements or attributes from specific locations within the document model.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 19757. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO/IEC 19757 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated references,
the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

Each of the following documents has a unique identifier that is used to cite the document in the text. The unique
identifier consists of the part of the reference up to the first comma.

URI, IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Internet Standards Track Specification,
August 1998, http://www.ietf.org/rfc/rfc2396.txt

XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

XML-Infoset, XML Information Set, W3C Recommendation, 24 October 2001,
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

XML-Names, Namespaces in XML, W3C Recommendation, 14 January 1999,
http://www.w3.org/TR/1999/REC-xml-names-19990114/

XPath, XML Path Language (XPath) Version 1.0, W3C Recommendation, 16 November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116

DRAFT INTERNATIONAL STANDARD ISO/IEC 19757-8

1© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

XML Schema, XML Schema , W3C Recommendat ion, 24 October 2001,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

XSLT, XSL Transformations (XSLT) Version 1.0 , W3C Recommendation,
http://www.w3.org/TR/1999/REC-xslt-19991116

XInclude, XML Inclusions (1.0), W3C Recommendation, ???, http://www.w3.org/TR/200?/REC-???/

XForms, XML Forms (1.0), W3C Recommendation, ?? October 2003, http://www.w3.org/TR/2003/REC-????/

3 Terms and definitions

3.1 document architecture

set of rules that are used to map a document instance to a document model defined by one or more schemas

4 The role of declarative document architectures

Declarative document architectures provide templates that can be used to define the structure and/or content of
specific fragments of a document instance within a schema or DTDs. If they are complete, such fragments can be
incorporated into document instances using XInclude. If they are only partially complete, and require further input
from users to form a section that can be validly included in the document, they can be presented to users as an XML
form (e.g. XForms compliant data requests) to ensure the capture of missing data.

In addition to forming an XML-based mechanism that mimics the functionality of SGML and XML entities, document
architectures can form the basis of abstract design patterns. An element in a document instance can, either by being
assigned a fixed attribute value in a schema or by inclusion of an attribute in the instance, be mapped to a named
element in a specified schema, so that it can be validated using the declarations in that schema. If subelements have
been renamed within the identified element these can be mapped to new names either by use of attributes associated
with individual elements or by the use of a "name map" associated with any of their parent elements.

Declarative document architectures can also be used to remap entity references to alternative names, and to reassign
entity maps as parts of different processes. For example, at certain stages in processing it may be important to retain
entity references without expansion. In such instances the entity replacement mechanism can be replaced by one
that automatically maps each entity reference to an entity reference, without breaking the rules about recursive entity
references.

NOTE 2: This functionality mimics that of SDATA entity definitions in SGML.

Elements and attributes that conform to this Part shall have a namespace whose associated URI is:

 purl://dsdl.org/Part8

In this Part the prefix dsdl8 is used to identify points at which this URI defines the namespace.

5 Defining a document fragment template

A document fragment template defines a well-formed set of related elements, with or without predefined contents for
their elements and attribute values. Document fragment templates can only be defined in as direct children of schemas.1

The dsdl8:predefined-fragment element may be used to identify document fragment templates within a schema.
This element can be used in two forms:

— As an element whose contents contain the required fragment

1 Document fragment templates cannot be defined as part of an element or attribute definition or within any rule or pattern defined by other parts
of the International Standard.

2 © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

— As an empty element whose source attribute contains a URI that identifies where a copy of the template can
be obtained from.

The namespace of the root element of a document fragment must be specifically declared using an attribute defined
according to the specification for XML-Names. The optional dsdl8:schema-source attribute can be used to enter
a URI that where a copy of a schema that can be used to validate the fragment can be obtained.

NOTE 3: Strictly speaking the namespace defintion should be sufficient to identify the schema required. The
dsdl8:schema-source attribute can be used to provide a locally significant mapping of the namespace name to a
specific copy of the validation schema.

Elements that require further input before the fragment can be embedded in a document instance must be flagged
with a dsdl8:request-content attribute whose value is true. Where attribute values need to be specified before
the fragment is complete the dsdl8:request-attributes attribute may be added. The value of this attribute is
a set of nametokens identifying the qualified name of all attributes whose value needs to be captured.

NOTE 4: A document fragment template must be a well-formed XML document that can be included in an XML document once
missing content and attribute values have been defined.

NOTE 5: This standard does not specify how attribute value and element content should be supplied to complete the elements
and attributes identified as requiring completion before inclusion, only that they do require completion. Missing values
can be supplied by parameters passed to XSLT transformations, by use of XForms that request the relevant information,
or any other mechanism deemed suitable by the application for capturing the required information.

Validators must report an error if one or more elements or attributues are still to be provided with values when the
document fragment template is included into a document instance.

6 Reusing document architectures

In many cases the names assigned to elements in existing schemas and attributes are specified in a language that
is not understood by user communities. The facilities in this clause allow locally-significant names to be mapped to
those used to name elements, attributes, entities and processing instruction types declared in a referenced schema.

6.1 Reassigning element and attribute names

To map an element to a differently named element in a schema definition users of this Part of the standard can:

— create a mapping schema that declares the mappings required, or

— assign a dsdl8:map-names attribute to an element in a document instance.

A dsdl8:name-map element is used to identify reusable mappings between names used in schemas and those
used in document instances. The element can be included as a foreign element in the definition of the appropriate
element or attribute in the schema. The contents of the element consists of a list of nametokens that identify alternative
names that can be assigned to the element or attribute. Names may be qualified providing the relevant namespaces
have been declared within the schema.

More than one dsdl8:name-map can be associated with a particular element or attribute definition. Nametokens
from multiple declarations are concatenated. Maps stored in an external resource may be included using the schema's
normal inclusion mechanism.

Mappings that are specific to a given instance can be specified using a dsdl8:map-names. The contents of the
attribute consists of matched pairs of nametokens, where the first name is the name of the element or attribute in the
document instance and the second is the equivalent name in the schema.

NOTE 6: It is assumed that such attributes will be defined as fixed attributes in the local document declaration so that they only
need to be defined once in the document, not on each instance of the element.

3© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Where a map-names attribute is assigned to an element which also has a name-map element within its model definition
local definitions extend those currently defined.

NOTE 7: Multiple names can be assigned to any element. Declarations that duplicate an existing map entry can be ignored.

Should we allow names to be paths so that we can define different rules for specific attributes associated with specific
elements? (Part 1 says that XPath should be used here, and there is not reason why a well-controlled subset should
not be used, but who defines this set remains an open question.) In theory adopting this option would allow users to
change one occurrence of an attribute/element to be mapped to one point in the schema, defined using the position()
function, and another to another, but this may be too powerful to be implemented efficiently. Would the gain be worth
the pain?

Name maps are inherited by descendants. Where all attributes of a specific name-map refer to a single name in the
relevant schema this means that definitions placed on the parent element will suffice for the children. But where
mapping of an attribute name depends on its parent then the mapping must be associated with the definition of the
child element to affected. Should this definition be specific to that element, but other inherited mappings need to be
assigned to descendants of the element a dsdl8:inherit-map-of-parent must be assigned a value of true.

NOTE 8: The default value of the dsdl8:inherit-map-of-parent attribute is false.

Ideally you would add an extra field to the XML Infoset to record the name used in the instance and then use the
existing fields to record the name and namespace of the declaration the element has been validadated against. (You
could change the definition of name() so that it returned the actual name and reserve namespace() and local-name()
for returning the names of the element in the schema.) But if we are not allowed to extend the Infoset spec, will name()
and local-name() refer to the name as entered in the document instance, or that in the schema the document is
validated against? (In other words, is reconstructing the document instance more important than passing on information
about the valid information along the pipeline, or is there some way of doing both without extending the Infoset?

6.2 Remapping entity references

Often the names assigned to entity references are difficult for users to understand, especially when they are specified
using a language which is not the native language of a particular user community. The facilities in this clause allow
locally-significant names to be mapped to those used to define entities in a referenced entity set.

To map an entity reference to a differently named entity in a entity definition users of this Part of the standard can:

— create a mapping schema that declares the mappings required

— assign a dsdl8:map-entities attribute to an element in a document instance.

A dsdl8:entity-name-map element is used to identify reusable mappings between names used in entity defintions
and those used in entity references. Such mappings may be defined using a foreign element in a schema that can
be defined at any level in the model at which entities may be defined. The contents of the element consists of matched
pairs of entity names where the first name is that assigned to the entity in its definition and the second is an alternative
name for the entity. The same defined entity name can be used as the first member of more than one entry. More
than one dsdl8:entity-name-map element can occur in the same schema. Entries in such maps shall be
concatenated.

This clause also specifies attributes that can be used to indicate when entity mapping is to be disabled within a
document instance, or within a specific element within a document instance. When an element includes a
dsdl8:disable-entity-mapping attribute whose value is true entity reference replacement within the contents
of the specificed element and any children that do not have a value of false for the same attribute are inhibited.

6.3 Renaming Parameter Entity Targets

Where the names of and properties of parameter entities have not been defined in terms understandable to
user-communities, users of this Part of the standard can create a mapping schema that declares the alternative names

4 © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

to be used by adding an empty dsdl8:map-pi-target element as a foreign element under the root node of a
schema. The element must be assigned values for two compulsory attribute:

— dsdl8:target-name, which contains the name to be used as the PITarget value for mapped processing
instructions

— dsdl8:alternative-names, which contains one or more nametokens that can be used as alternative names
for the target name.

Where properties of the target namespace are also to be assigned locally significant names a dsdl8:property-names
attribute can be assigned to the element. The contents of this attribute is a set of matched pairs of nametokens, the
first member of the pair being a property name applicable to processing instructions whose target specified for the
element, and the second of which is an alternative name for that property.

NOTE 9: Multiple assignments of alternative names to the same target property shall not be considered to be an error.

7 Removing elements and attributes from specific locations within a document model

In some situations it is important to be able to restrict the occurrence of certain elements or attributes within specific
fragments of documents, perhaps because values in contents make it obvious that such elements and attributes are
no longer relevant.

NOTE 10: While Part 3 of this standard allows errors to be reported when such situations occur it does not provide facilities for
inhibiting such elements within fragments.

NOTE 11: This clause provides facilities that mimic the SGML exclusions option. (Part 2 contains a mechanism for extending
schema definitions within local declarations that is similar in effect to SGML inclusions.)

Should we be duplicating the exclusions function, or should we be content with reporting validation errors if excluded
elements are identified without providing any further control of models?

To be completed

5© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Annex A
(normative)

Validation of declarative document architecures

The normative schemas defined in this annex provide formal definitions for the elements and attributes used to declare
document architectures. The elements defined by these schemas will normally be used as foreign elements within
schemas or as foreign attributes within document instances.

A.1 RELAX NG XML Schema for Validating Declarative Document Architectures

To be completed

A.2 RELAX NG Compact Schema for Validating Declarative Document Architectures

To be completed

A.3 Schematron Rules for Validating Declarative Document Architectures

To be completed

6 © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Annex B
(informative)

Using XSLT to generate XForms

This annex contains an XSL Transformation that will convert any incomplete document fragment into an XForm whose
result, after completion of all fields, will be a complete document fragment that can be incorporated into a document
instance using XInclude.

To be completed

7© ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Bibliography

[1] XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt

8 © ISO/IEC 2004 – All rights reserved (Preparatory draft: 2004-04-23)

ISO/IEC 19757-8

Summary of editorial comments:

[6.1] Reassigning element and attribute names

Should we allow names to be paths so that we can define different rules for specific attributes associated with specific
elements? (Part 1 says that XPath should be used here, and there is not reason why a well-controlled subset should
not be used, but who defines this set remains an open question.) In theory adopting this option would allow users to
change one occurrence of an attribute/element to be mapped to one point in the schema, defined using the position()
function, and another to another, but this may be too powerful to be implemented efficiently. Would the gain be worth
the pain?

[6.1] Reassigning element and attribute names

Ideally you would add an extra field to the XML Infoset to record the name used in the instance and then use the
existing fields to record the name and namespace of the declaration the element has been validadated against. (You
could change the definition of name() so that it returned the actual name and reserve namespace() and local-name()
for returning the names of the element in the schema.) But if we are not allowed to extend the Infoset spec, will name()
and local-name() refer to the name as entered in the document instance, or that in the schema the document is
validated against? (In other words, is reconstructing the document instance more important than passing on information
about the valid information along the pipeline, or is there some way of doing both without extending the Infoset?

[7] Removing elements and attributes from specific locations within a document model

Should we be duplicating the exclusions function, or should we be content with reporting validation errors if excluded
elements are identified without providing any further control of models?

