Université du Québec École de technologie supérieure Department of Software and IT Engineering

Keeping Pace with Information and Technology

François Coallier Francois.coallier@etsmtl.ca

le génie pour l'industrie

Table of Contents

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

ÉT^S le génie pour l'industrie

What is ICT ?

ISO/IEC JTC 1 Terms of References:

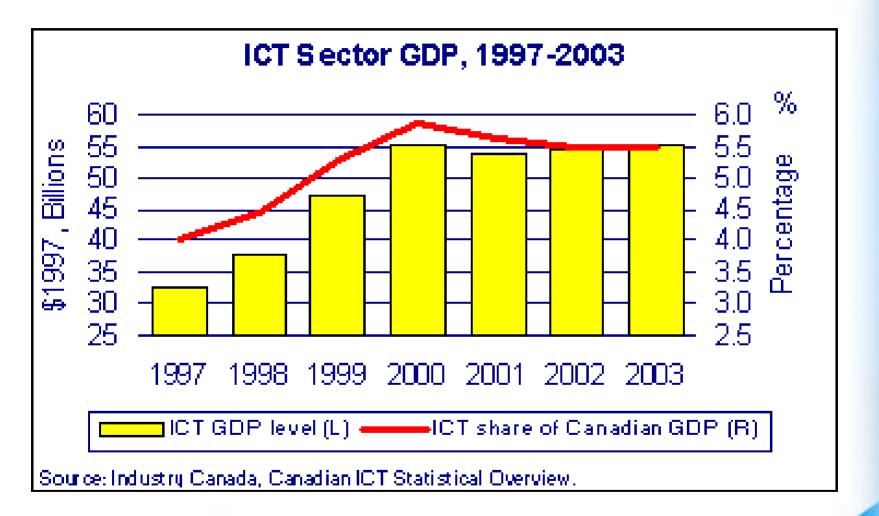
Standardization in the field of Information Technology.

Information Technology includes the specification, design and development of systems and tools dealing with the capture, representation, processing, security, transfer, interchange, presentation, management, organization, storage and retrieval of information

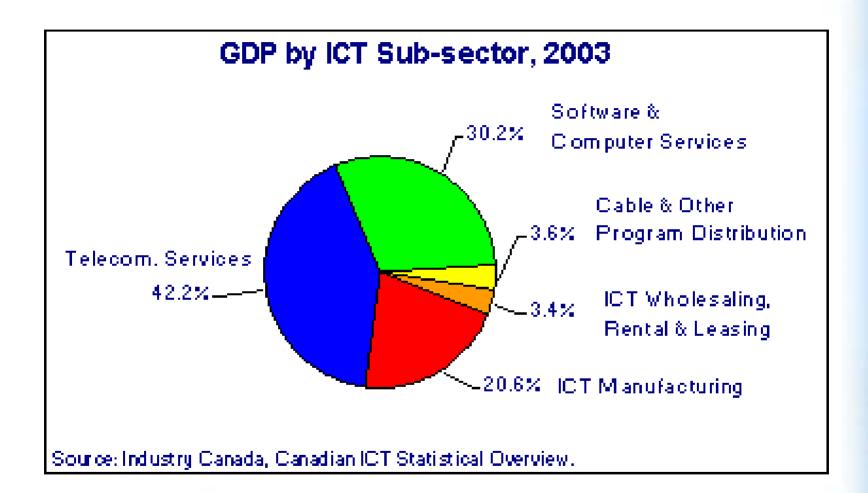
Table of Content

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

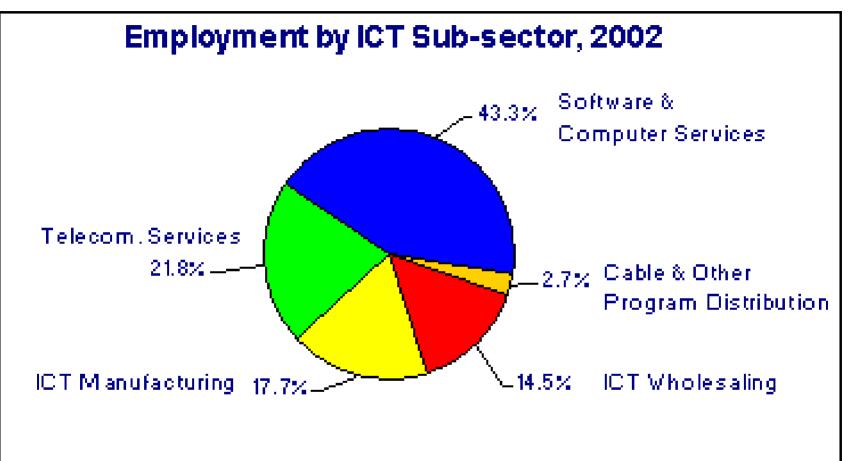
ÉT le génie pour l'industrie


Markets Size (10⁹ US \$)

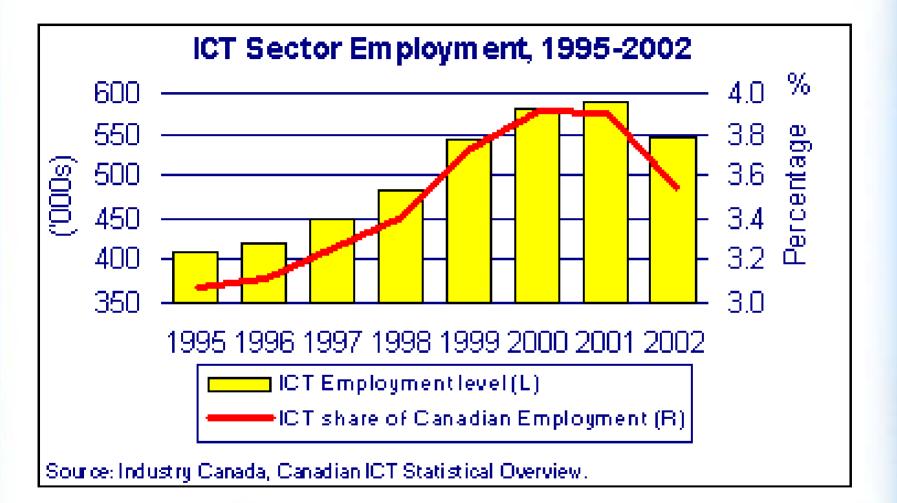
Global ICT 1998		ICT Vendor 2002 [2]		
Telecommunications	777	Telecommunications equipment	380	
IT Hardware	336	Computer Systems	240	
Internal Spending	304	Hardware	240	
IT Services	266	Software Licenses	70	
	266	Project Oriented IT	250	
IT Software	115	Services	230	
Other Office		Semiconductors	150	
Equipment	29	Support/Management IT Services	350	
TOTAL	1 827	TOTAL	1 440	


[1] Miller, H.; Sanders, J., Scoping the global market: size is just part of the story, IEEE IT Professional, Volume: 1 Issue: 2, March-April 1999, Page(s): 49-54 [2] R.Fulton, COM-15-1667, Predicts 2002 – What's Ahead for the IT Industry, Gartner Research, Research Note, 2002-01-08

> le génie pour l'industrie


Université du Di

http://strategis.ic.gc.ca/epic/internet/inict-tic.nsf/en/h_it07229e.html



http://strategis.ic.gc.ca/epic/internet/inict-tic.nsf/en/h_it07229e.html

Source: Industry Canada, Canadian ICT Statistical Overview.

http://strategis.ic.gc.ca/epic/internet/inict-tic.nsf/en/h_it07229e.html

http://strategis.ic.gc.ca/epic/internet/inict-tic.nsf/en/h_it07229e.html

ICT is also an enabler

- Very important part of the global and national infrastructure
- ICT is embedded in many product, and a very large chunk of the service industry

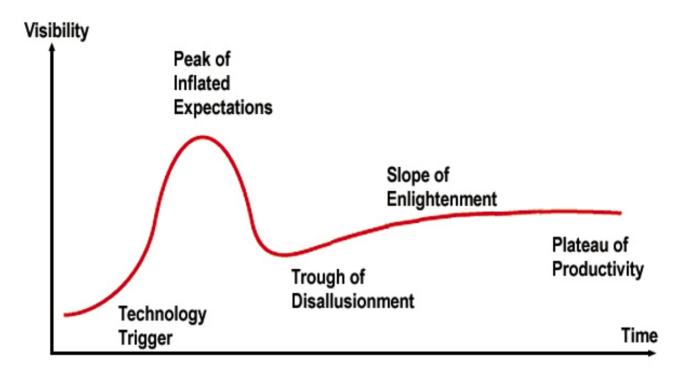
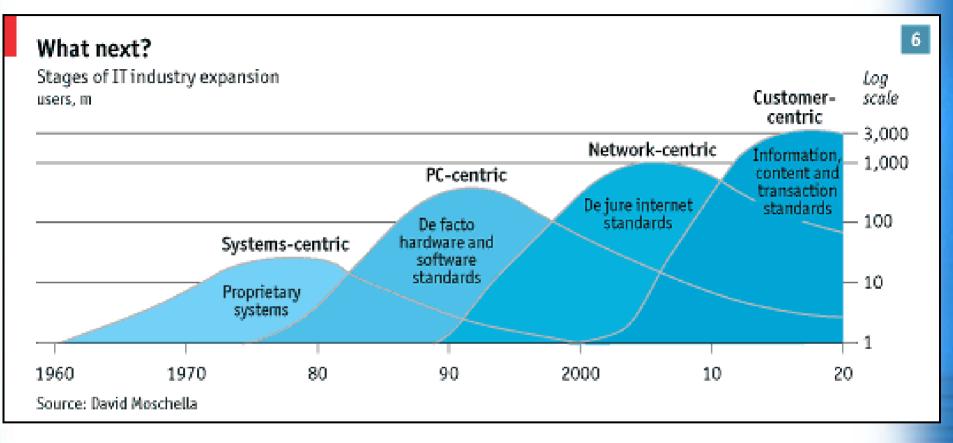


Table of Content

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

ÉT le génie pour l'industrie

Technology Hype Cycle



-Gartner Group

http://www3.gartner.com/1_researchanalysis/mrr/1201mrr.pdf http://www.logophilia.com/WordSpy/hypecycle.asp http://www.anvil.eu.com/Documents/PositionPaper5.htm

pour l'industrie

ICT Trends

From: *The fortune of the commons*. In *Coming of Age - A Survey of the IT Industry*. The Economist, May 8th 2003

pour l'industri

How much information ?

Table 1.2: Worldwide production of original information, if stored digitally, in terabytes circa 2002. Upper estimates assume information is digitally scanned, lower estimates assume digital content has been compressed.

Storage	2002	2002	1999-	1999-	%
Medium	Terabytes	Terabytes	2000	2000	Change
	Upper	Lower	Upper	Lower	Upper
	Estimate	Estimate	Estimate	Estimate	Estimate
					S
Paper	1,634	327	1,200	240	36%
Film	420,254	76,69	431,690	58,209	-3%
Magnetic	4,999,230	3,416,230	2,779,760	2,073,760	80%
Optical	103	51	81	29	28%
TOTAL:	5,421,221	3,416,281	3,212,731	2,132,238	69%

Source: How much information 2003

http://www.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm#summary

How much information ?

Table 1.13: The size of the Internet in terabytes.			
Medium	2002 Terabytes		
Surface Web	167		
Deep Web	91,850		
Email (originals)	440,606		
Instant messaging	274		
TOTAL	532,897		

Source: How much information 2003 http://www.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm#summary

pour l'industrie

Summary

- ICT ubiquity will increase
- ICT is already a critical component of Canada's infrastructure, and will become more so
- Some key technological/market trends:
 - Machine to machine (M2M) transactions
 - Utility computing
 - Multimedia
 - Mobility
 - Home / personal

Table of Content

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

ÉT le génie pour l'industrie

IT Globalization: Offshoring

LEADER	India	
CHALLENGERS	Canada, China, Czech Republic, Hungary, Ireland, Israel, Mexico, Northern Ireland, Philippines, Poland, Russia, South Africa	
UP-AND- COMERS	Belarus, Brazil, Caribbean, Egypt, Estonia, Latvia, Lithuania, New Zealand, Singapore Ukraine, Venezuela	
BEGINNERS	Bangladesh, Cuba, Ghana, Korea, Malaysia, Mauritius, Nepal, Senegal, Sri Lanka, Taiwan, Thailand, Vietnam	

The offshore IT race. SOURCE: CARTNER INC as quoted by the Globe and Mail in IT jobs contracted from far and wide, North American companies are saving money by 'offshoring', John Saunders, The Globe and Mail, 2003-10-14, http://www.theglobeandmail.com/servlet/story/RTGAM.20031014.gtrjobs14/BNStory/einsider

pour l'industri

Université de Duebec École de technologie supérieure Department of Software and IT Engineering

The World's Rising Innovation Hot Spots

In 2003, U.S. inventors secured 88,000 U.S. patents. The U.S. spent 2.7% of GDP on R&D and graduated 400,000 scientists and engineers. But developing nations are making rapid progress.

	INDIA	CHINA	RUSSIA	
Strengths	Embedded software, drugs, business software, chip design	Mechanical engineering, computer graphics, handwriting recognition	Aerospace, software, laser optics, energy, algorithms, chemistry	
• U.S. Patents	■1993 ■2003 30 <mark>354</mark>	60 366	62 268	
R&D Spending	1% OF GDP	1.2% OF GDP	1.2% OF GDP	
 Science & Engineering Grads* 	316 THOUSAND	337 THOUSAND	216 THOUSAND	
ISRAEL	SINGAPORE	TAIWAN	SOUTH KOREA	
Optical and	Broadband,	Chips, 5.300	Digital displays,	
wireless communications, chips, software, sensors	grid computing, biotech, handheld devices, computer peripherials	Chips, 5,300 PCs, multi- media devices, network equip- ment	memory chips, computer games 3,952 wireless telecom, broad- band	
wireless communications, chips, software,	grid computing, biotech, handheld devices, computer	PCs, multi- media devices, network equip-	memory chips, computer games 3,952 wireless telecom, broad-	
wireless communications, chips, software, sensors 1,188	grid computing, biotech, handheld devices, computer peripherials 438	PCs, multi- media devices, network equip- ment	memory chips, computer games 3,952 wireless telecom, broad- band	
wireless communications, chips, software, sensors 1,188 306 4.7%	grid computing, biotech, handheld devices, computer peripherials 39 438 39 2.2% OF GDP 5.6 THOUSAND	PCs, multi- media devices, network equip- ment 62 2.3% OF GDP 49 THOUSAND	memory chips, computer games 3,952 wireless telecom, broad- band 764 2.9%	

IT Globalization: Training & R&D

Canada: R&D: 1.8% of GDP Grads (98): ~ 35 K Patents (00): ~ 3,6 K

From:

Scouring The Planet For Brainiacs Worldwide innovation networks are the new keys to R&D vitality -- and competitiveness BusinessWeek, October 11, 2004

Table of Content

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

É le génie pour l'industrie

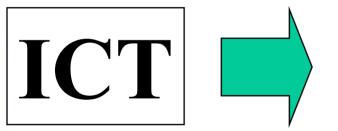
What is a Standard?

Guideline documentation that reflects agreements on products, practices, or operations by nationally or internationally recognized industrial, professional, trade associations or governmental bodies

<u>or</u>

is accepted as a de facto standard by industry or society.

Types of Standards


- Organization Standards
 - Such as internal company standards
- Market Standards (De Facto)
 - Such as Microsoft Windows
- Professional Standards
 - Developed by Professional organizations (such as IEEE)
- Industry Standards
 - Developed by industrial consortia (such as the OMG)
- National Standards
 - Developed by national standards organization
- International Standards
 - Developed by formal international standard organization

ICT Standards

Social and Cultural

Processes and Methods

Human Interfaces

APIs and Middleware

Hardware and Devices

Base Technologies

International Standardization

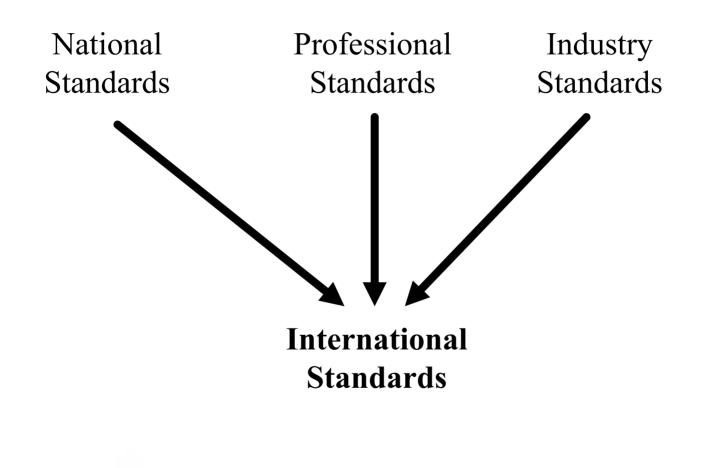
(Technical standards)

• International Telecommunication Union (ITU)

- Founded: 17 May 1865
- <u>Scope</u>: international organization within the United Nations System where governments and the private sector coordinate global telecom networks and services.
- International Organization for Standardization (ISO)
 - Founded: 1947
 - <u>Scope:</u> The mission of ISO is to promote the development of standardization and related activities in the world with a view to facilitating the international exchange of goods and services, and to developing cooperation in the spheres of intellectual, scientific, technological and economic activity.

• International Electromechanical Commission (IEC)

- Founded: June 1906
- <u>Scope</u>: the leading global organization that prepares and publishes international standards for all electrical, electronic and related technologies.



JTC 1				
Technical Areas	JTC1 Subcommittees and Working Groups			
Application Technologies	SC 36 - Learning Technology			
Cultural and Linguistic Adaptability and User Interfaces	SC 02 - Coded Character Sets SC 22/WG 20 – Internationalization SC 35 - User Interfaces			
Data Capture land Identification Systems	SC 17 - Cards and Personal Identification SC 31 - Automatic Identification and Data Capture Techniques			
Data Management Services	SC 32 - Data Management and Interchange			
Document Description Languages	SC 34 - Document Description and Processing Languages			
Information Interchange Media	SC 11 - Flexible Magnetic Media for Digital Data Interchange SC 23 - Optical Disk Cartridges for Information Interchange			
Multimedia and Representation	SC 24 - Computer Graphics and Image Processing SC 29 - Coding of Audio, Picture, and Multimedia and Hypermedia Information			
Networking and Interconnects	SC 06 - Telecommunications and Information Exchange Between Systems SC 25 - Interconnection of Information Technology Equipment			
Office Equipment	SC 28 - Office Equipment			
Programming Languages and Software Interfaces	SC 22 - Programming Languages, their Environments and Systems Software Interfaces			
Security	SC 27 - IT Security Techniques SC 37 - Biometrics			
Software and Systems Engineering	SC 07 - Software and System Engineering			
Department of Software and IT Engineering	pour l'industrie			

Consortia / Fora

- ETSI is monitoring <u>489</u> ICT Fora http://www.etsi.org/forawatch/home.htm
- Some of the most actives include:
 - OASIS Organization for the Advancement of Structured Information Standards
 - W3C World Wide Web Consortium
 - OMG Object Management Group
 - IETF Internet Engineering Task Force
 - OMA Open Mobile Alliance
 - Etc..

Internationalization of Standards

Finchistr

Table of Content

- What is ICT
- Why ICT is important to Canada
- ICT Trends
- Globalization of ICT
- ICT Standardization
- Conclusions

E pour l'indus

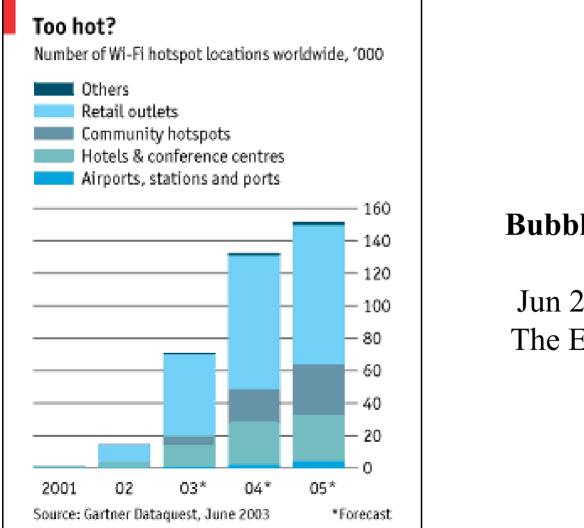
Conclusions

- ICT is important to Canada
- ICT is still evolving fast
- ICT is getting more global
- ICT standards are needed:
 - To ensure a working and reliable infrastructure
 - To foster international commerce
- A very significant part of the leading edge standardization activities occur in consortia/fora

BACKUPS

ÉT le génie pour l'industrie

The Growing Importance of Systems Integration



:Exhibit 5 of « When computers learn to talk: A Web services primer », S. Patil et S. Saigal, The McKinsey Quarterly, no 1, 2002, Web exclusive

le génie pour l'industrie

The Accelerated Spreading of Wi-FI Hotspots

Bubble trouble

Jun 26th 2003 The Economist

Computer Games Market (billions of US \$)

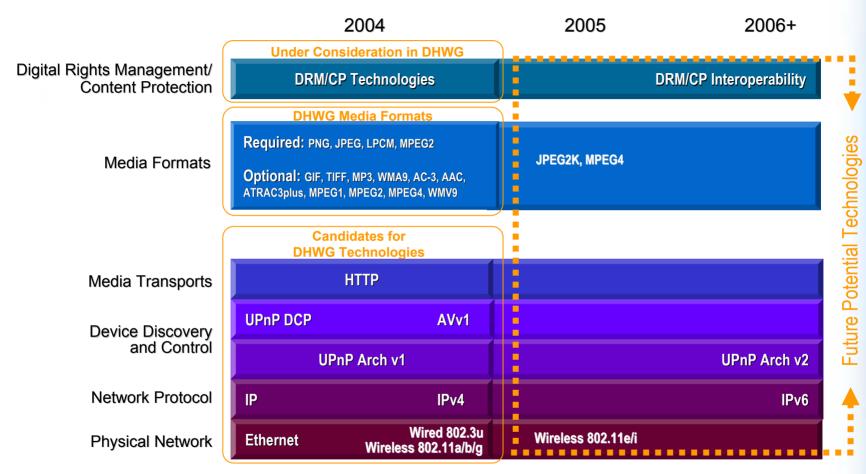
	2000	2001	2002	2003
Games Software	13	15	17	19
Cinema box-office receipts	18	18	19	20
DVD/Video	18	21	26	30
CDs	35	33	32	32

Console wars, Jun 20th 2002, The Economist http://www.economist.com/displayStory.cfm?Story ID=1189352

pour l'industri

Ubiquity

Embedded Micros Worldwide Forecast Including MPUs, MCUs, DSPs (\$ billion)



Source: Gartner Dataquest 2001

From http://www.embedded.com/advert/update.htm

Université du Duisse École de technologie supérieure Department of Software and IT Engineering le génie pour l'industrie

Digital Home Vision



Disclaimer: Some of the formats/standards referenced above are trademarks or registered trademarks of their respective companies.

pour l'industrie

© 2003 Digital Home Working Group

www.dhwg.org

