
i

Contents
Page

1 Scope... 1

2 Normative references .. 2

3 Precedence of ISO 8879 ... 2

4 Definitions .. 2

5 Use of SGML test suites ... 3

6 Test suite documentation .. 5

7 Types of tests .. 8

8 General requirements for individual tests ... 8

9 Test case naming conventions .. 9

10 Requirements for SGML names and literals... 9

11 Conventions for testing string length.. 10

12 Source document formatting con-ventions ... 10

13 Test categories .. 11

14 The Reference Application for SGML Testing (RAST) .. 12

15 The Reference Application for Capa-city Testing (RACT).................................... 19

16 Test suite reports ... 20

17 Testing SDIF data streams.. 21

Figure

1 A 240-character processing instruction .. 10

Annexes

A The ISO 8879 Element Structure Information Set (ESIS)...................................... 23

B Sample tests and RAST results ... 26

ii

1

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

Information Technology — Document Processing and Related
Communication — Conformance Testing for Standard
Generalized Markup Language (SGML) Systems

0 Introduction

ISO 8879:1986 and 8879:1986/A1:1988, Information
processing – Text and office systems – Standard Gener-
alized Markup Language (SGML), define when a
system is a conforming SGML system. The determina-
tion of whether a system is a conforming SGML system
is of value both to potential users of such systems and to
their developers. This determination is, however, a com-
plex process. To this end, efforts are underway to
develop test suites to validate conformance. Standard-
ization of development and use of test suites assures
consistency of results and informs the public of the
implications of the tests. Such formalism is provided by
this standard, which includes

– guidelines for the content of individual tests;

– rigorous conventions for naming test cases and
the constructs used within them;

– formatting and comment conventions;

– conventions for classifying test cases;

– conventions for documenting test suites;

– definition of a Reference Application for SGML
Testing (RAST) that indicates how an SGML parser
interprets a test;

– definition of a Reference Application for Capac-
ity Testing (RACT) that reports a parser's capacity
calculations;

– conventions for reporting a system's performance
on a test suite.

This standard also addresses conformance to the related
standard, ISO 9069:1988, Information Processing –
SGML support facilities – SGML Document Inter-
change Format (SDIF), as SDIF is needed to connect
the several entities of an SGML document into a single
object for interchange within OSI.

This standard may be used by those who develop SGML
test suites, those who build SGML systems to be evalu-
ated by such suites, and those who examine an SGML
system's performance on a test suite as part of the pro-
cess of selecting an SGML tool.

1 Scope

This standard addresses the construction and use of test
suites for verifying conformance of SGML systems. Its
provisions assist those who build test suites, those who
build SGML systems to be evaluated by such suites, and
those who examine an SGML system's performance on
a test suite as part of the process of selecting an SGML
tool.

In particular, this standard includes:

– criteria for the organization of test suites, includ-
ing naming conventions, documentation conventions,
and specification of applicable concrete syntaxes and
features. Among other advantages, these conventions
facilitate any non-SGML automatic processing that
may be convenient for the developers or the users of
the tests;

NOTE – An example of such non-SGML processing is sort-
ing tests by name.

2

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

– a standard form for describing test results that
makes clear what has been proven or disproven by the
tests;

– the specification of a Reference Application for
SGML Testing (RAST) that interprets all markup to
allow machine comparison of test results for docu-
ments conforming to ISO 8879. RAST indicates in a
standard way when tags, processing instructions, and
data are recognized by the parser, replacing refer-
ences and processing markup declarations and
marked sections appropriately. RAST tests informa-
tion likely to be passed by a general-purpose SGML
parser to an application but does not test additional
information that some parsers provide;

– the specification of a Reference Application for
Capacity Testing (RACT) that reports a validating
parser's capacity calculations. An SGML system that
supports this application indicates its ability to report
capacity errors regardless of whether it supports vari-
ant capacity sets;

– the specification of test procedures related to
SDIF data streams.

This standard applies to the testing only of aspects of
SGML implementation and usage for which objective
conformance criteria are defined in ISO 8879.

NOTE – Among the aspects of an SGML system not
addressed by this standard are error recovery, phrasing of
error messages, application results, and documentation
(including the system declaration).

2 Normative references

The following standards contain provisions which,
through reference in this text, constitute provisions of
this American National Standard. At the time of publi-
cation, the editions indicated were valid. All standards
are subject to revision, and parties to agreements based
on this American National Standard are encouraged to
investigate the possibility of applying the most recent
editions of the standards below:

ISO 646:1983, Information processing – ISO 7-bit
coded character set for information interchange

ISO 8879:1986, Information processing – Text and
office systems – Standard Generalized Markup Lan-
guage (SGML)

ISO 8879:1986/A1:1988, Information processing – Text
and office systems – Standard Generalized Markup Lan-
guage (SGML) Amendment 1

ISO 9069:1988, Information processing – SGML sup-
port facilities – SGML Document Interchange Format
(SDIF)

3 Precedence of ISO 8879

Any discrepancy between any provision of this standard
and ISO 8879 should be resolved in accordance with the
latter. Furthermore, should any future effective edition
of ISO 8879 contradict any provision of this standard, a
test suite for the future version will be considered to
conform to this standard only if the discrepancy is
resolved in accordance with the effective edition of
ISO 8879. In particular, the precedence of ISO 8879
applies to the definitions in clause 4, the description of
RAST in clause 14, and the description of ESIS in
annex A.

Should there be any internal inconsistencies within this
standard between annex A and the remainder, imple-
mentors of conforming test suites shall rely on the
provisions in annex A.

4 Definitions

NOTE – None of the terms defined below are used or
defined in ISO 8879. Should such definitions be added to
some future version of ISO 8879, the precedence of
ISO 8879 will apply in accordance with clause 3.

4.1 anomalous test case: A test case that deviates
from some requirement of ordinary tests because the
tested SGML construct is incompatible with that
requirement.

4.2 application modules: Components of an SGML
system other than the parser and entity manager.

4.3 effective edition: The current edition of a stan-
dard including any amendments, addenda, or other
modifications.

4.4 Element Structure Information Set: Informa-
tion comprising the element structure that is described
by SGML markup (the element structure information set
is defined in annex A).

4.5 ESIS: Element Structure Information Set.

4.6 equivalent SGML documents: SGML docu-
ments that, when parsed with respect to identical DTDs
and LPDs, have an identical ESIS.

4.7 internal entity: An entity whose replacement text
appears in an entity declaration.

3

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

4.8 lexicographic order: An order in which distinct
strings are arranged by comparing successive letters.
One string appears before another if it is a prefix of the
second, or if, according to the following conventions, in
the first position where they differ, the character in the
first string precedes the character in the second string.
Printable characters precede nonprintable characters.
One printable character precedes another if the ISO 646
character number of the first is smaller than the ISO 646
character number of the second. In particular, the space
character precedes all other printable characters and any
other printable character precedes a second one if the
first precedes the second character in the list of printable
characters given in 4.14. A nonprintable character pre-
cedes another if its character number in the document
character set is smaller than the character number of the
second in the document character set.

NOTE – For strings consisting only of printable characters,
this order is independent of concrete syntax.

4.9 major SOO: A statement of objective for several
related tests in a test suite.

4.10 markup-sensitive SGML application: An
SGML application that can act on SGML markup as
well as element structure.

4.11 minor SOO: A statement of objective that
describes the particular principle of the SGML language
that distinguishes an individual member of a group of
related tests.

4.12 nonprintable character: A character that is not
a printable character (see 4.14).

4.13 ordinary test case: A test case that follows the
naming, organizing, and formatting conventions item-
ized in this standard and identified as requirements for
ordinary tests (see anomalous test case).

4.14 printable character: A character with ISO 646
character number in the range 32 to 126 inclusive. These
characters consist of the space character and all the
following:

! " # $ % & ' () * + , - . / 0 1 2
3 4 5 6 7 8 9 : ; < = > ? @ A B C D
E F G H I J K L M N O P Q R S T U V
W X Y Z [\] ^ _ ` a b c d e f g h
i j k l m n o p q r s t u v w x y z
{ | } ~

4.15 RACT: Reference Application for Capacity
Testing.

4.16 RAST: Reference Application for SGML
Testing.

4.17 Reference Application for Capacity Testing:

An SGML application that reports capacity calculations
(defined in clause 15).

4.18 Reference Application for SGML Testing:

An SGML application that reports ESIS information
(defined in clause 14).

4.19 SOO: Statement of objective.

4.20 statement of objective: A brief description of
the aspect of the SGML language explored in an indi-
vidual test case or a group of related tests.

4.21 structure-controlled SGML application: An
SGML application that operates only on ESIS informa-
tion and the “APPINFO” parameter of the SGML
declaration; a structure-controlled application operates
on the element structure described by SGML markup,
never on the markup itself.

4.22 test case (or test): An SGML document
included in a test suite.

4.23 tested system: An SGML system that is evalu-
ated by inspection of the results it produces on the test
cases of a test suite.

4.24 test suite: A documented collection of SGML
documents intended to exercise an SGML system in
order to indicate whether the system conforms to the
specifications of ISO 8879.

5 Use of SGML test suites

Because of the wide variation possible in SGML sys-
tems, no single test suite is adequate for testing how well
all SGML systems conform to the requirements of
ISO 8879. Some SGML systems produce SGML docu-
ments, others process SGML documents to obtain
various results, still others both read and produce SGML
documents. Some systems are restricted to documents
with particular document type declarations, others can
process arbitrary documents meeting the constraints of
the system declaration. A test suite intended for a more
general system contains test cases that cannot be pro-
cessed by a more restrictive system; a test suite for a
restrictive system does not adequately explore the capa-
bilities of a more general one.

NOTE – An SGML test suite indicates whether the modules
of an SGML system that process SGML do so according to
the specifications of ISO 8879. Testing a system's SGML
capabilities does not indicate whether it correctly performs
a desired application in other respects.

4

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

5.1 Comprehensive test suites

SGML test suites shall be comprehensive. A general-
purpose SGML test suite shall provide tests that explore
conformance to every required aspect of the SGML lan-
guage and to every aspect of supported optional
features. Similarly, a test suite for a particular applica-
tion shall provide tests to explore every aspect of the
SGML language used in that application.

NOTE – An application-specific test suite may not be able
to test all required constructs of SGML and cannot indicate
whether the underlying SGML parser conforms to the
requirements of ISO 8879 for such constructs. For example,
attributes cannot be tested if an application does not happen
to use any. Thus, a test suite for such an application cannot
predict conformance of attribute handling in an implemen-
tation of another application built with the same parser.

This standard defines requirements for testing general
SGML systems. Test suites intended for more restrictive
environments may deviate from these requirements only
where the requirements are incompatible with the sys-
tem to be tested. For example, the conventions for
selecting generic identifiers cannot be followed in a sys-
tem restricted to a document type declaration that uses
other conventions.

A test suite for a validating SGML system shall include
erroneous test cases to investigate comprehensively the
system's ability to detect errors. A nonvalidating SGML
system can be tested with such a test suite, but its results
on erroneous documents are not predictable.

5.2 The role of SGML in a tested system

The way a test suite is used depends on whether the
tested system processes existing SGML documents, or
produces SGML documents.

5.2.1 Systems that read SGML

A system that acts upon existing SGML documents is
tested by examining the results it produces from every
test in a comprehensive test suite. However, the varia-
tion in SGML systems means these results may take any
number of forms. As a result, there is no unique method
for determining whether a tested system correctly pro-
cesses a test case.

The remainder of this subsubclause discusses various
methods for evaluating test suite results produced by a
system that processes SGML documents. Of these
methods, RAST provides the most information and
should be used whenever possible.

5.2.1.1 Evaluating with RAST

RAST (see clause 14) is a simple SGML application
designed to validate a parser's recognition of the Ele-
ment Structure Information Set (ESIS). ESIS (see

annex A) is the information exchanged by a parser and
other components of a program that implements a struc-
ture-controlled application. RAST reflects the ESIS of
an SGML document with a minimal amount of addi-
tional information in such a way that the results it
produces from two SGML documents using the same
concrete syntax will be the same if and only if the two
documents have the same ESIS. An SGML system that
supports RAST is easily tested by machine comparison
of RAST results to known correct RAST output for
every document in a test suite.

NOTE – There is no requirement that an SGML system
support RAST. However, it should be easy to implement
RAST with any general-purpose SGML system that pro-
vides a software-development environment for building
SGML applications.

5.2.1.2 Comparing with equivalent docu-ments

An SGML system that does not support RAST can be
tested to some extent through a structure-controlled
application with the following properties:

– The application is not restricted to one or more
specified document type definitions;

– The application's output is machine-readable (for
example, it is a computer file rather than printed paper
or sound). Such applications include, for example,
one that counts the number of elements in a document
or one that produces a vocabulary list of the unique
words that occur within the content of a document.

The test procedure involves comparing the application's
output on sets of equivalent, but not identical, SGML
documents. Identical output must be produced for such
documents. This criterion alone cannot demonstrate a
system's conformance to ISO 8879. For example, the
criterion is satisfied by a system that produces identical
output for all documents, equivalent or not. More infor-
mation is obtained if the application produces different
results for documents that are not equivalent. Note,
however, that the simple word-list application just
described does not meet this stricter constraint, since
there could be documents with very different element
structure that use the same vocabulary.

NOTE – Implementors of test suites that consist of sets of
equivalent documents should verify that members of each
set are indeed equivalent by confirming that RAST pro-
duces the same output for every member in the set.

5.2.1.3 Evaluation through error recognition

The correctness of a validating SGML parser can, in
large measure, be demonstrated if the parser a) reports
erroneous SGML documents to be invalid and b) reports
valid documents to be conforming. This type of testing
can be done regardless of how errors are reported (pos-

5

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

sibilities include visual and auditory signals as well as
error messages). However, some aspects of SGML pars-
ing – for instance, significance of record ends and
correct interpretation of default attribute values – do not
affect whether the document is valid and hence cannot
be tested in this way. Comprehensive testing of markup
minimization in this manner is also difficult. Further-
more, a system that reports an erroneous document to be
in error need not be conforming; the system may have
accepted the erroneous construct and misinterpreted
some correct markup.

5.2.1.4 Other forms of evaluation

Knowledge of particular applications can be used to
design system-specific methods of reporting all or part
of the ESIS information in a document. The reported
information is an indication of the conformance of the
tested system's parser to ISO 8879.

5.2.2 Systems that generate SGML

A system that produces SGML documents is tested by
processing representative output with a system that
reads SGML documents. A test suite therefore consists
of test cases that produce a comprehensive collection of
output documents.

NOTE – This procedure shows whether the tested system
produces conforming SGML documents from the test
cases; it provides no information about whether the output
is correct in other respects.

5.2.3 Systems that both read and produce SGML

A system that both processes and generates SGML doc-
uments can be tested separately as a system that reads
SGML and as one that produces SGML. Depending on
the relationship between the input and output docu-
ments, a comparison of the two may provide additional
results. Although such a comparison is application
dependent, it may reveal information about SGML con-
formance. One form of comparison is testing whether
input and output are equivalent SGML documents
(which can be done by a character-by-character compar-
ison of their RAST results). This comparison is useful,
for example, in testing a text editor that can both import
and export SGML documents. Such an editor's SGML
parsing can be tested by importing each test in a test
suite and immediately exporting the unedited document;
the result should be an equivalent document. Similarly,
a tool that replaces a minimal SGML document with an
equivalent one using various forms of markup minimi-
zation should produce output equivalent to its input. For
some applications, it may be useful to verify that input
and output are identical. Other forms of comparison
depend on particular applications.

5.2.4 Systems that use SGML as an intermediate

form

A system may use SGML even if both its original input
and final output have some other form. Such a system
creates an SGML document and then processes it to
obtain another result. Depending on the implementa-
tion, it may be possible to test the embedded SGML
parser in another application. Furthermore, if the inter-
mediate SGML document can be saved, the system can
be evaluated as a system that produces SGML. In other
cases, system-specific testing is required.

6 Test suite documentation

This clause describes information that shall be included
in the documentation that accompanies a test suite. This
information shall be available to all potential and actual
users of the test suite and shall be repeated in any report
generated after a system is tested.

6.1 General documentation

The documentation shall include the following:

– one or more identifiers, such as ISO
8879:1986(E) or ISO 8879:1986/A1:1988(E), indi-
cating the effective edition of ISO 8879 used in
preparing the test suite;

– one or more identifiers, such as ISO/IEC 13673–
1994(E), indicating the effective edition of this stan-
dard used in preparing the test suite and in any
implementations of RAST and RACT used to gener-
ate results of those applications provided with the test
suite;

– the following statement, translated if the docu-
ment is not in English:

A test suite can indicate that an SGML system is
nonconforming by providing a test on which the
system fails. However, no test suite can prove that an
SGML system is fully conforming or predict the
results the system would obtain on untested
documents.

– the following statement, translated if the docu-
ment is not in English:

When a tested system produces results other than
those expected by a test suite, the discrepancy may
result from an error in either the test suite or the tested
SGML system.

– a description of the types of SGML system that
can be tested by the test suite. This description, for
example, indicates whether the test suite is restricted

6

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

to a particular application. It also identifies any provi-
sions of this standard that could not be observed –
naming conventions that are incompatible with an
application's document type declaration, for instance;

– indication of whether the test suite explores vali-
dation as well as conformance of SGML documents;
in other words, whether some test cases are deliber-
ately erroneous documents;

– description of the document character sets used in
the test suite in the syntax of the document character
set parameter of the SGML declaration, with descrip-
tive comments, if desired;

– a list of all optional SGML features addressed by
the test suite in the syntax of the feature use parameter
of the system declaration, with descriptive com-
ments, if desired;

– a list of all optional SGML features not covered
by the test suite, with a statement that the results do
not predict the tested system's performance on docu-
ments using these features. The list is presented in the
syntax of the feature use parameter of the system dec-
laration, with descriptive comments, if desired;

– a description of the concrete syntaxes included in
the test suite in the syntax of the concrete syntax
scope and concrete syntaxes supported parameters of
the system declaration, with descriptive comments, if
desired;

– a description of the capacity sets included in the
test suite in the syntax of the capacity set parameter
of the system declaration, with descriptive com-
ments, if desired;

– an indication of whether some test cases include
explicit SGML declarations or all test cases have
implied SGML declarations;

– indication of whether the test suite is accompa-
nied by RAST results for individual tests and, if so:

– the system declaration of the implementation
of RAST used to create the results. Descriptive
comments may be added. The system declaration
shall not indicate that an optional feature is sup-
ported unless the implementation is able to
interpret all processing instructions that direct
RAST's processing of that feature (see 14.6.13,
14.6.14, and 14.6.15).

NOTE – Ideally, the implementation of RAST should sup-
port all character sets, variant concrete syntaxes, optional
features, and variant capacity sets addressed in the test
suite. Since such an implementation may not be available
when the test suite is constructed, however, it is important
that any discrepancies be fully described.

If the test suite provides test cases for optional
features not supported by the implementation of
RAST, RAST results shall not be provided for
those particular tests;

– indication of whether the particular implemen-
tation of RAST that generated the results is capable
of producing the error indication, #ERROR
(see 14.6.2);

– indication of whether the test suite provides
RACT results for individual tests;

– the number of test cases in each category listed in
clause 13, as well as identification of any new catego-
ries defined for this test suite, with the number of test
cases in each.

6.2 Test case documentation

The documentation shall also include a statement of
objective (SOO) for each test. The SOO describes the
primary aspect of the SGML language described in the
test case. SOOs are clear and concise statements, which
may be direct quotations from ISO 8879, possibly from
syntax productions, notes, indented examples, or
annexes. A test's SOO appears as a comment within the
test case. Furthermore, the SOOs for all tests in the test
suite shall be listed in a separate report. The SOO report
allows an individual to review the scope and some of the
accuracy of the test suite without inspecting the test
cases themselves. The document shall include the name
of the test case corresponding to each SOO.

When a test suite includes variations of one principle,
readability of the SOO documentation can be increased
by extracting the common principle into a major SOO
and the variations into minor SOOs. The SOO comment
in the test case then is the concatenation of the associ-
ated major and minor SOOs. An example of a major
SOO is “A prolog can begin with other prolog.” Asso-
ciated minor SOOs might be:

– An other prolog can be a comment declaration;

– An other prolog can be an s separator;

– An other prolog can be a processing instruction.

6.3 Naming SOOs

Each SOO, including major and minor SOOs, shall be
given an eight-character name. Letters in SOO names
are always lowercase. Each SOO name shall consist of
a three-character unique identifier followed by a five-
character clause identifier.

The first character in the unique identifier is a letter. If
the letter is ‘g’, ‘p’, or ‘i’, than the test shall be a con-

7

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

forming or erroneous document according to the
following table:

Any other first letter may be used, but this standard does
not assign meaning to other letters.

NOTE – For example, implementors of large test suites
might define additional conventions when there are more
SOOs in one of the categories in the above table than there
are three-character combinations beginning with a particu-
lar letter. Implementors might also use different initial
letters to avoid duplicating the unique identifiers of an ear-
lier test suite.

The second and third characters of the unique identifiers
may be letters or digits, and no significance is attached
to the choice of characters.

The clause identifier is a five-character code indicating
the clause in ISO 8879 defining the primary aspect of
SGML to be tested. Each character is a letter or digit
corresponding to a numeric value. Digits represent
themselves; the letter ‘a’ corresponds to the number 10;
‘b’ corresponds to 11, etc. The letter ‘z’ is used for all
numbers over 34. The first character identifies the
clause, the second character the subclause, the third the
subsubclause, the fourth the subsubsubclause, and the
final digit the paragraph.

Clause headings are not counted for the purpose of this
numbering. All other text blocks whose semantics
require they be formatted starting at the beginning of a
line are considered to be paragraphs for this purpose.
For example, each syntax production, note or paragraph
within a note, indented example, list item, and list head-
ing is counted as a separate paragraph.

For tests relevant to higher-order subdivisions in
ISO 8879, zeros are used for the lower-order clause
number. For example, a test of a document with an erro-
neous prolog based on the second paragraph of
Clause 10.4.2 would be given a name of the form
pxxa4202 where “xx”' represents two arbitrary letters or
digits.

The paragraph number may be left as 0, if the SOO is
not associated with a particular paragraph.

As mentioned in clause 6, a test suite identifies the
effective edition of ISO 8879 on which it is based. This
information is needed to interpret clause identifiers.

When a test involves a construct defined in a figure, the
first three characters in the clause identifier are fig. (It is
not expected that any future version of ISO 8879 will
add a subsubclause numbered 15.18.16, so these clause

identifiers are effectively unique.) The fourth character
is the figure count (using the 1–9, a–z numbering
scheme just described). The last digit identifies the row
in the figure, if relevant, and is otherwise 0.

NOTE – The assignment of clauses to SOOs is subjective.
For example, individuals may disagree whether a test pri-
marily investigates a system's handling of an ATTLIST
declaration or of an attribute value.

6.4 Revising SOOs

As a test suite is revised over time, SOO names shall
remain stable. If a SOO is deleted, its name may not be
assigned to a new SOO. The text of the SOO may be
corrected, however. A single SOO may be converted
into a major SOO with several variations, a major SOO
may become a minor SOO, and a minor SOO may
become a major SOO or a single SOO. Furthermore, the
clause identifier may be corrected. For example, the
SOO author may initially associate a SOO relating to
attribute values with the clause defining a relevant dec-
laration; in a revision, he may consider it more accurate
to identify the SOO with the clause that deals with the
specification of attribute values.

7 Types of tests

SOOs, and corresponding tests, fall into two main (pos-
sibly overlapping) groups:

– Normative, those that test a system's adherence to
the SGML standard;

– Volume, those that test the quality of an
implementation.

The normative category can be further divided into
SOOs and tests that

– relate to a single construct of SGML;

– relate to a single combination of SGML
constructs.

SOOs for normative tests are often quotations, or para-
phrases of quotations, from ISO 8879.

The volume category can be further divided into SOOs
and tests that

– exercise a tested system with variations of norma-
tive tests;

– stretch a tested system's capabilities (e.g., explor-
ing memory limits, maximum integer size on a
computer system, etc.).

Within these groups, ordinary tests are those that con-
form to the naming, organization, and formatting

First letter Identifies a test of a
g conforming (or “good”) document
p erroneous prolog
i erroneous document instance

8

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

requirements of this standard. Since these requirements
are compatible with, but more restrictive than, those of
ISO 8879, it is conceivable that an erroneous SGML
system might correctly process all ordinary tests but be
unable to handle other SGML documents. Therefore, to
conform to this standard, a test suite shall include at
least one anomalous test that deviates from each
requirement for ordinary tests. An anomalous test shall
conform to all requirements for ordinary tests except
those, identified in its SOO, that it intentionally violates.

8 General requirements for individual tests

All tests in a test suite shall meet the following
requirements:

– Tests are classified by the primary part of the
SGML language addressed. However, a complete
SGML document contains multiple constructs (e.g.,
both a prolog and a document instance). Tests can be
grouped into overlapping categories according to the
constructs they test. A standard definition of catego-
ries is provided in clause 13. Comments in every test
identify all relevant categories;

– Tests are commented to identify closely related
tests in the test suite. For example, suppose one test
verifies that a name of maximum length is accepted
and another verifies that it is an error if a name con-
tains too many characters. Comments within each test
should mention the other;

– Each test is identified as an erroneous SGML doc-
ument or as a conforming document;

– Some tests are designed to verify that a system is
not making a particular mistake. Such tests are writ-
ten so that a system that makes the mistake is likely to
interpret a conforming document as nonconforming
or a nonconforming document as conforming;

– Insofar as possible, tests of nonconforming docu-
ments contain at most one error;

– Some SGML implementations use separate pro-
grams to process the prolog and the document
instance. For the convenience of implementors of
such systems, tests are classified by whether they
exercise the prolog or the document instance;

– Each test illustrates a single SOO, or a single
major SOO combined with a single minor SOO.
However, multiple instances of the designated aspect
of the language may appear in an individual test. For
example, to illustrate that (with appropriate naming
rules) case is not significant in generic identifiers, a

single test may include start-tags in which the same
generic identifier is entered in lowercase, uppercase,
and mixed upper- and lowercase;

NOTE – When a test is intended to illustrate some conjunc-
tion of different SGML constructs, the combination is
identified in the SOO. Thus, the test still illustrates a single
SOO.

– The size of a test is minimized to exclude super-
fluous content; every construct used in the test case is
directly relevant to the principal aspect of SGML
being tested. This guideline is not enforced to the
extreme of sacrificing the readability or comprehen-
sibility of the test. For example, since #PCDATA is
defined as zero or more characters, the minimal string
satisfying each instance of #PCDATA is the empty
string. Tests are more readable, however, if
#PCDATA is realized with a short phrase relevant to
the test's SOO.

NOTE – Adherence to these guidelines is often subjective.
For example, individuals may disagree about whether a par-
ticular pair of tests should be commented as being closely
related.

9 Test case naming conventions

Each ordinary test has an eight-character name, possibly
with a three-character suffix. The test name is the same
as the name of the corresponding SOO, as defined in 6.3
(the name of the minor SOO, if the test is based on a
major and minor SOO pair). Suffixes are added to test
names when a test suite includes equivalent documents.
All equivalent documents have the same eight-character
name and different, arbitrarily assigned suffixes.

NOTE – On computer systems where files are identified by
a name and an extension, it may be convenient to place each
test case in a separate file whose name is the same as the test
name and whose extension is the same as the suffix.

10 Requirements for SGML names and
literals

It may be efficient in some environments to combine
multiple tests into a single document. Therefore, names
shall be unique to each test. Names shall also indicate
the function of the named object. Similarly, literals shall
indicate their function. To meet these goals, SGML
names and literals in ordinary tests are selected as
follows:

– Each name or literal other than a number or num-
ber token begins with the three-character unique
identifier of the test case name;

9

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

– Only lowercase letters are used in names other
than reserved names and in literals;

– The test's document element has the same name as
the test;

– In literals and in names other than that of the doc-
ument element, the unique identifier is followed by a
hyphen, a one-letter code to illustrate the construct
being named, and a sequence number within a test.
The one-letter codes are

a – Attribute;
e – Entity;
g – Generic identifier;
i – Unique identifier;
l – Link set;
m – Minimum literal;
n – Notation;
s – Short reference map;
t – Link type;
v – Value of attribute;
x – Miscellaneous.

The sequence numbers following these codes are
assigned in the order in which they occur in the test
case and are unique to each code. Leading zeros are
prefixed to the sequence numbers if necessary so that,
within a test, each number following a given code has
the same length.

Thus, a test case named p7b94402 that uses two entities,
one attribute, and ten values would name the entities
p7b-e1 and p7b-e2, the attribute p7b-a1, and the values
p7b-v01 through p7b-v10.

NOTE – Although RAST produces attribute information in
lexicographic order, the naming conventions ensure that
lexicographic order usually corresponds to the order in
which attributes appear in the corresponding ATTLIST
declaration. The coincidence of the lexicographic and dec-
laration orders simplifies manual comparison of an ordinary
test and its RAST output.

The naming conventions are not applied to anomalous
tests that are incompatible with them.

NOTE – For example, this naming scheme cannot be used
to test:

– Name tokens that are not names;

– A parameter entity with the same name as a gen-
eral entity;

– Name-length violations; and

– A variant concrete syntax’s use in a name of name
characters that are not name characters in the refer-
ence concrete syntax.

11 Conventions for testing string length

Ordinary tests dependent on the length of strings place
the current string length as a decimal integer within the
string in the following locations:

– immediately following each RS character;

– every ten characters within the string;

– immediately before each RE character.

RS and RE characters are included in the character
count. The last digit of the string length appears in the
indicated position.

NOTE – For example, if the string is more than ten charac-
ters long, the digit ‘1’ appears as the ninth character and ‘0’
as the tenth.

The ten-character marker is omitted if the characters to
represent it overlap the beginning- or end-of-record
marker, or abut the preceding ten-character marker with
no intervening spaces. Note that these requirements
apply to the SGML source document rather than the
RAST result.

10

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

Figure 1 gives an example of the string-length conven-
tion. It shows a processing instruction that is 240
characters long, including the RS character at the begin-
ning, and the RE character at the end, of each line.

12 Source document formatting con-
ventions

Conventions for indentation, use of blank records and
comments (especially at the beginning and end of each
test) promote readability of tests and human scanning of
information and also simplify tasks that the user of a test
suite may wish to automate. For example, a fixed posi-
tion for the generic identifier of the document element
makes it easy to extract.

Therefore, ordinary tests follow the general pattern
given below:

<!DOCTYPE name [
<!--Categories:
category1
category2

.

.

.
-->
<!--
short description of test, including its SOO
-->
declaration1
declaration2

.

.

.
]>
document instance

An example of such a test is the following:

<!DOCTYPE g5i79413 [
<!--Categories:
attribute
-->
<!--
An empty attribute value literal can be specified if the
type of the attribute value is CDATA (Clause 7.9.4.1,
Paragraph 3).
-->
<!ELEMENT g5i79413 - - ANY> <!ELEMENT g5i-
g1 - - (#PCDATA)> <!ATTLIST g5i-g1
 g5i-a1 CDATA #IMPLIED>
]>
<g5i79413>
<g5i-g1 g5i-a1="">
</g5i-g1>
</g5i79413>

In particular:

– The first several records of each ordinary test con-
tain, in order, each starting in the first character of the
record:

a) the start of the document type declaration,
through the dso;

b) the beginning of a comment declaration,
introduced by the word “Categories:”;

c) one or more records each containing a single
category name as described in clause 13 (in
uppercase, lowercase, or a mixture);

d) the closing delimiters for the comment
declaration ;

e) the opening delimiter for a second comment
declaration ;

f) one or more lines containing a brief description
of the test. This description begins with the test's
SOO, including the associated clause and

<?
3....10........20........30........40........50........60
64....70........80........90.......100.......110.......120
125..130.......140.......150.......160.......170.......180
185..190.......200.......210.......220.......230.......240>

Figure 1 - A 240-character processing instruction

11

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

paragraph numbers. The SOO may be followed by
additional text explaining how the elements, data,
and other constructs within the test support the
principle described by the SOO.

g) the closing delimiters for the comment
declaration ;

h) one or more records containing the document
type declaration subset, composed of several
declarations;

i) the closing delimiters for the document type
declaration ;

j) the document element begins in the next
record.

– There are no spaces or blank records at the begin-
ning or end of a test;

– Each test ends with a record end;

– In markup declarations, ps+ in the syntax produc-
tions of ISO 8879 is usually realized by a single
SPACE, or by a comment with a single SPACE on
each side. To avoid a record longer than 60 charac-
ters, such a SPACE can be replaced by an RE, and
successive records within a single declaration may be
indented. Other than an RE that separates two decla-
rations, nothing is inserted in an ordinary test for a
ps∗ or ds∗ in a production of ISO 8879, unless a sep-
arator is required;

– Each markup declaration begins in the first char-
acter of a new record.

To facilitate processing on multiple computer systems,
an additional formatting requirement for ordinary tests
is that records are limited to 60 characters.

Anomalous tests that deviate from the requirements for
ordinary tests are required when necessary to test a par-
ticular aspect of SGML. For example, a comprehensive
test suite must contain at least one test in which a
markup declaration begins elsewhere than the first char-
acter of a record.

13 Test categories

As mentioned in clause 12, tests are classified by cate-
gory. Some categories are listed below, along with an
indication of whether they refer to constructs that con-
forming systems must support or to optional constructs.

A particular test suite may define its own categories in
addition to those listed here:

ambiguous content model (optional)
anomalous test (required)
attribute (required)
capacity (required)
character data (required)
character reference (required)
character set (optional)
comment (required)
CONCUR (optional)
content model (required)
data tag (optional)
default entity (required)
delimiter-in-context (required)
document instance (required)
element (required)
exception (required)
explicit link (optional)
external identifier (required)
FORMAL (optional)
general entity (required)
implicit link (optional)
marked section (required)
markup declaration (required)
markup minimization (optional)
multicode syntax (optional)
non-SGML character (optional)
non-SGML data entity (required)
notation (required)
OMITTAG (optional)
optional report (optional)
parameter entity (required)
processing instruction (required)
prolog (required)
quantity (required)
rank (optional)
record boundary (required)
replaceable character data (required)
required or optional status of element (optional)
specific character data (required)
SDIF (optional)
separator (required)
SGML declaration (optional)
short reference (optional)
SHORTTAG (optional)
simple link (optional)
SUBDOC (optional)
tag (required)
unique ID (required)
variant concrete syntax (optional)

12

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

14 The Reference Application for SGML
Testing (RAST)

This clause defines RAST.

NOTES

1 As discussed in clause 3, conflicts between the
definition of RAST and ISO 8879 are resolved according to
ISO 8879, and conflicts between the definitions of RAST
and ESIS are resolved according to ESIS.

2 The result of applying RAST to a particular document
is itself neither an SGML document nor an interchange for-
mat. Its sole purpose is to indicate whether a document was
parsed correctly.

3 RAST produces identical results from variations of an
SGML document that are equivalent according to the pro-
visions of ISO 8879. For example, RAST generates the
same output for two SGML documents that are identical
except for one or more of the following variations:

– The attribute specifications within a start-tag
appear in different orders;

– One document includes a start-tag with an
attribute specification in which the attribute value
specification happens to be the same as the default
value; the other document omits this attribute
specification;

– One document includes an RE that is ignored
according to the provisions of ISO 8879; the other
document omits this RE;

– One document uses omitted tag minimization; the
other does not;

– One document uses short references; the other
does not.

The above list is not exhaustive.

14.1 Concrete syntax of the tested docu-ment

RAST was designed to produce human-readable results
from SGML documents that use the core concrete syn-
tax, the reference concrete syntax, or some variant
concrete syntax that differs from the reference concrete
syntax only in its choice of short-reference delimiters.

RAST can also process documents that use other con-
crete syntaxes. However, for some syntaxes, such as
those where the characters ‘/’ and ‘&’ are used as name-
start characters, the result may be difficult for humans to
interpret. The result is suitable, however, for machine
comparison.

14.2 System identifiers

There is one way in which tests prepared for use with
RAST may vary from system to system. System identi-
fiers are interpreted in a system-specific fashion, and a
RAST implementation need not control this interpreta-

tion. As a consequence, system identifiers in tests may
have to be changed manually from system to system,
and the RAST result may legitimately differ in the dis-
played values of system identifiers.

Two ways of minimizing the effect of this problem
exist:

– minimizing the number of tests incorporating sys-
tem identifiers;

– selecting system identifiers likely to be accept-
able on a wide range of computer systems.

NOTE – Many computer systems accept file names of up to
eight letters or digits followed by a period and a three-letter
extension.

14.3 Processing instructions that direct RAST

RAST operates on information exchanged between an
SGML parser and the rest of an SGML system.
Annex A lists the information that moves in each direc-
tion. When information flows to the parser from other
components, RAST determines the information content
from the system data of certain processing instructions.
These processing instructions are easily recognized
because their system data always begin with the charac-
ters rast.

In particular, RAST uses processing instructions to
determine which document type declarations and which
link type declarations are active, to select link rules, and
to determine whether to parse SGML subdocument enti-
ties. The format and interpretation of these processing
instructions are given in 14.6.13, 14.6.14 and 14.6.15.
The format is defined in productions using the same
notation as that used in 14.6 to define RAST. To avoid
confusion, productions for processing instructions are
identified by letters instead of the numbers that label the
productions defining the RAST result.

14.4 Requirements for implementing RAST

An SGML system that implements RAST needs certain
capabilities beyond those required by ISO 8879. In par-
ticular, such a system shall be able to:

– produce the RAST result in a machine-readable
form;

– sort strings in lexicographic order;

– interpret and act on the processing instructions
defined in 14.6.13, 14.6.14 and 14.6.15, in order to
test certain optional features.

Furthermore, the RAST result is expressed in a system-
dependent character set. All characters mentioned in the
definition of the RAST result in 14.6.2 appear in delim-
iter strings in the reference concrete syntax, are name

13

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

characters in the reference concrete syntax, appear in the
document input to RAST, or are uppercase counterparts
of lowercase letters in the input document.

14.5 Notation

The RAST result is described formally in a variation of
the production notation found in ISO 8879. The equals
sign in each production is preceded by a square-brackets
enclosed list of the productions that use the syntactic
variable being defined. In addition, each syntactic vari-
able after the equals sign is followed by the number of
the production that defines it, also enclosed in square
brackets.

The terminals of this notation are listed below:

– Name, A name as defined by the concrete syntax
of the parsed document (shown in the style of a “ter-
minal variable,” even though it is not a character
class)

NOTE – If the concrete syntax permits, a Name may con-
tain nonprintable characters.

– Data Character, A printable character;

– LE, The system representation of the end of an
output line. The LE may in fact be the same character
that is used in input as the RE.

NOTE – Line ends must be represented in a system-depen-
dent manner in order to allow the RAST representation to
be easily examined and manipulated by humans.

The processing instructions that direct RAST’s process-
ing of optional SGML features as described in 14.3 use
the additional terminal:

– String, a sequence of SGML characters.

14.6 Syntax of the RAST result

This subclause defines RAST through a formal descrip-
tion of its result.

RAST generates one or more lines for each component
of a document's structure. Lines representing data are
clearly distinguishable from lines representing markup,
and each type of markup is distinct. The presence of an
LE at the end of each item of markup means that each
item of markup and each piece of data starts on a new
line.

14.6.1 Uppercase and lowercase letters in the
RAST result

RAST outputs many names and literals from its input
document. Clause 10 requires many letters in names and
literals in test cases to be lowercase. In contexts in
which ISO 8879 mandates substitution of the uppercase
counterpart for a lowercase letter, RAST outputs the
uppercase form.

NOTE – The requirements of clause 10 and uppercase sub-
stitution allow RAST to test interpretation of SGML
naming rules.

14.6.2 The RAST result

[1] RAST result [11]=
(processing instruction data[18]∗,
((active link[26]∗,
base document element[2]) |
concurrent document element[33]+),
processing instruction data[18]∗) |
((“#ERROR” | “#RAST-PI-ERROR”), LE)

RAST produces the single word #ERROR if the parsed
document is not a valid SGML document. An imple-
mentation of RAST within a conforming SGML system
that is not a validating SGML system need not be able
to produce the error indication. An implementation of
RAST that interprets the processing instructions defined
in 14.6.13, 14.6.14 and 14.6.15 produces #RAST-PI-
ERROR if a processing instruction with system data
beginning rast does not meet the requirements of one of
those three subsubclauses.

NOTES

1 An implementation of RAST may need to discard a
partial output file to produce either error indication.

2 RAST generates #RAST-PI-ERROR when it ex-pects
a processing instruction that was not provided.

3 #RAST-PI-ERROR indicates an error in a test case or
in an implementation of RAST. It should never appear in
the RAST results provided by a test suite.

RAST uses processing instruction data to show the sys-
tem data of all processing instructions that occur in a
document, in the order in which the processing instruc-
tions appear. It reports processing instructions that
occur in the prolog prior to generating any active link,
base document element, or concurrent document ele-
ment. Similarly, it reports processing instructions that
appear at the end of the SGML document after it finishes
the base document element or the last concurrent docu-
ment element. All other processing instructions are
reported within the base document element or a concur-
rent document element (a single processing instruction
may be reported within more than one concurrent docu-
ment element).

RAST produces at least one concurrent document ele-
ment when one or more active document types are
identified. Otherwise, it produces a base document ele-
ment, possibly preceded by one or more active link
specifications. RAST's use of active link is explained in
14.6.14; that of concurrent document element in
14.6.15.

14

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

14.6.3 Elements

[2] base document element [1]=
document element[3]

[3] document element [2]= simple link
information[28]∗, parsed element[4]

[4] parsed element [3, 5, 33]= element start[6],
parsed content[5]∗, element end[7]

[5] parsed content [4]=
external entity[17] | parsed element[4] |
processing instruction data[18] |
data line[20] | internal sdata entity[19] | link
set information[30]

[6] element start [4]= “[”, Name,
(LE, ((attribute information[8]+,
link information[29]?) |
link information[29]))?,
“]”, LE

[7] element end [4]= “[/”, Name, (LE, link set
information[30])?, “]”, LE

Each element in an SGML document is represented in
the RAST result by a parsed element. The document ele-
ment, all proper subelements, and all included elements
are represented in the same manner. This representation
includes both an element start and an element end, even
if the element is required to be entered without an end-
tag because it has declared content EMPTY or has a
specified content-reference attribute.

The Name in the element start and element end sur-
rounding the (possibly empty) parsed content of an
element is the generic identifier of the element being
represented. The closing bracket ending an element end
always appears on the same line as the element's name.
The closing bracket ending an element start appears on
a line by itself unless the element start has no attribute
information and no link information.

RAST represents every item of content with parsed con-
tent. It reports items of parsed content in the same order
as the corresponding information appears in the parsed
document.

14.6.4 Attributes

RAST reports attribute information for each attribute in
the element's ATTLIST declaration. RAST reports
attributes in the lexicographic order of the attribute
names. This order is not necessarily the order in which
the attributes are specified in the document instance, but
is ordinarily the order in which they appear in the
ATTLIST declaration (see clause 10).

[8] attribute information [6, 12, 27, 28, 31, 32]=
Name, “=”, LE, ((“#IMPLIED”, LE) |
((markup data[21] | internal sdata
entity[19])∗, (external id information[14] |
entity information[9]+)?))

The Name in an item of attribute information is that of
the attribute for which information is being given.

For unspecified impliable attributes, including unspeci-
fied content reference attributes, the attribute
information is #IMPLIED. Otherwise, the value is rep-
resented by zero or more instances of markup data and
internal sdata entity. The latter can appear only in the
representation of character data attribute values. In all
other respects, the values of all types of attributes appear
the same.

Each notation attribute value that appears in the RAST
result is followed immediately by the external id infor-
mation for the notation.

Each value for a general entity name attribute or a gen-
eral entity name list attribute is followed by the entity
information for each of the entity names that appear in
the attribute value. Where there is more than one entity
name, the entity information is given for the different
entity names in the same order as the entity names
appear in the attribute value.

NOTE – The attribute value is displayed as recognized by
an SGML parser – after entity expansion and, where appro-
priate, removal of extra spaces and case shifting of letters.
In attribute values that consist of two or more names, name
tokens, numbers, number tokens, entity names or ID refer-
ences, consecutive tokens are separated by one SPACE.

14.6.5 Entity information

[9] entity information [8]=
(external entity information[10] |
internal entity information[13]),
“#END-ENTITY”, LE

[10] external entity information [9, 17]=
(“#SUBDOC”, LE, external id
information[14], parsed subdocument[11]?) |
(“#CDATA-EXTERNAL”, LE,
entity information details[12]) |
(“#SDATA-EXTERNAL”, LE,
entity information details[12]) |
(“#NDATA-EXTERNAL”, LE,
entity information details[12])

[11] parsed subdocument [10]=
“#PARSED-SUBDOCUMENT“, LE, RAST
result[1]

15

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

[12] entity information details [10]=
external id information[14],
“#NOTATION=”, Name, LE, external id
information[14], attribute information[8]

[13] internal entity information [9]=
(“#CDATA-INTERNAL”, LE,
markup data[21]) |
(“#SDATA-INTERNAL”, LE, markup
data[21]∗)

Whether external entity information includes a parsed
subdocument is discussed in 14.6.13.

In entity information details, the first external id infor-
mation is that declared for the entity, and the second is
that declared for its notation. RAST reports this infor-
mation both when the entity is referenced in content and
when the entity's name appears in the value of a general
entity name attribute or a general entity name list
attribute.

RAST reports attribute information for each attribute
declared for the associated notation. As with start-tag
attributes, data attributes are displayed in lexicographic
order by attribute name.

14.6.6 External identifiers

[14] external id information [8, 10, 12]=
(public identifier information[15],
system identifier information[16]?) |
system identifier information[16] |
(“#SYSTEM”, LE, “#NONE”, LE))

[15] public identifier information [14]= “#PUBLIC”,
LE, (markup data[21]+ | (“#EMPTY”, LE))

[16] system identifier information [14]=
“#SYSTEM”, LE, (markup data[21]+ |
(“#EMPTY”, LE))?

RAST generates public identifier information when it
reports an external identifier that has a public identifier.
If the external identifier also has a system identifier,
RAST also generates system identifier information.
When reporting an external identifier that does not have
a public identifier, RAST generates system identifier
information. In both public identifier information and
system identifier information, #EMPTY indicates the
empty literal. RAST uses #NONE within system identi-
fier information to indicate that an external identifier
has neither a public identifier nor a system identifier
(that is, that the external identifier consists solely of the
reserved name SYSTEM).

NOTES

1 RAST displays the text of public and system identifiers
as normalized by an SGML parser. For example, extra

spaces are removed from public identifiers.

2 RAST reports the public and system identifiers for
notations and external data entities and does not reflect any
resolution the entity manager makes of these identifiers. No
meaningful resolution of an external data entity is needed if
an SGML document will never be processed by an applica-
tion other than RAST, as is the case for documents intended
only for testing SGML parsers.

14.6.7 External entities

[17] external entity [5]= “[&”, Name, LE,
external entity information[10], “]”, LE

The Name in an external entity is the name of the refer-
enced general entity.

The closing bracket ending an external entity always
appears on a line by itself.

14.6.8 Processing instructions

[18] processing instruction data [1, 5]= “[?”,
(LE, data line[20]+)?, “]”, LE

The data lines in processing instruction data contain the
text of a processing instruction recognized by the
SGML parser.

The closing bracket ending processing instruction data
appears on a line by itself unless the processing instruc-
tion being represented contained no text.

NOTE – RAST produces processing instruction data even
for those processing instructions, defined in 14.6.13,
14.6.14.1, and 14.6.15, that it interprets to determine pro-
cessing of SUBDOC, LINK and CONCUR features.

14.6.9 Data

[19] internal sdata entity [5, 8]= “#SDATA-TEXT”,
LE, markup data[21]∗, “#END-SDATA”, LE

[20] data line [5, 18]= (“|”, Data Character+, “|”,
LE) | special character[22]

[21] markup data [8, 13, 15, 16, 19]=
(“!”, Data Character+, “!”, LE) |
special character[22]

[22] special character [20, 21]= (“#RS”, LE) |
(“#RE”, LE) | (“#TAB”, LE) |
(“#”, character number[23], LE)

[23] character number [22]=
nonnegative integer[24]

[24] nonnegative integer [23, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]=
“0” | (non-zero digit[25],
(“0” | non-zero digit[25])∗)

[25] non-zero digit [24]= “1” | “2” | “3” | “4” | “5” |
“6” | “7” | “8” | “9”

16

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

A number that is used as a character number is a deci-
mal number, with no extra leading zeros, that represents
a character.

14.6.10 Uniform display of data

RAST displays all the following data values in a uni-
form manner:

– #PCDATA content;

– processing instructions;

– attribute values;

– the expansion of specific-character data entities;

– public and system identifiers.

All the above values are surrounded by exclamation
marks except for #PCDATA content and processing
instructions, which are surrounded by vertical bars. The
only differences are the limitations imposed by
ISO 8879 on the data that may appear in each context.
For example, public identifiers may not contain record-
ends.

14.6.11 Internal SDATA entities

An internal sdata entity in #PCDATA or a character
data attribute value need not contain any characters. If
multiple adjacent specific character data entity refer-
ences occur, RAST produces an internal sdata entity for
each reference.

NOTES

1 The text of a specific character data entity is
represented differently when the entity is referenced in
content than when the entity's name appears in the value of
a general entity name or general entity name list attribute.
In the first case, the text is surrounded by lines containing
#SDATA-TEXT and #END-SDATA, and in the second
#SDATA-INTERNAL and #END-ENTITY.

2 References to SDATA entities can occur in SGML
documents in contexts not reflected in ESIS and therefore
not reported by RAST, for example, in an attribute value lit-
eral of an attribute whose declared value is other than
CDATA.

14.6.12 Data characters

RAST shows data characters as follows:

– A printable character always appears as a Data
Character. The character code that is used to repre-
sent the letter ‘A’, for instance, is always displayed as
‘A’, even in specific character data, where it may not
represent the letter ‘A’;

– The character codes that are used to represent
record-start, record-end, and tab always appear as
#RS, #RE, and #TAB, respectively, on separate lines,
even in specific character data. The tab character is
reported as #TAB regardless of whether it is declared
in the SGML declaration to be a function character.

NOTE – Since, unlike other data characters, these represen-
tations are not surrounded by vertical bars or exclamation
marks, the occurrence of one of these characters is distinct
from a sequence of data characters that happens to spell one
of these codes;

– All other characters are represented by a character
number.

NOTE – The above requirements pertain only to data char-
acters. All characters are represented by themselves within
a Name. In particular, while RAST represents nonprintable
characters other than record-start, record-end, and tab by
character numbers when they occur as data characters, it
outputs such characters directly when they occur in a
Name.

RAST never produces more than 60 Data Characters
on a single output line. A sequence of more than 60 con-
secutive Data Characters is divided into several lines,
each, except possibly the last, containing exactly 60
Data Characters (plus whatever other characters are
required on the line). In particular, RAST produces mul-
tiple instances of data line or markup data when more
than 60 consecutive Data Characters occur.

Every line of data contains some data characters; that is,
RAST does not generate a data line when an element's
content is empty or the value of a character data attribute
has no characters.

NOTE – Exclamation marks rather than vertical bars are
used to delimit data that appear inside markup. This con-
vention, which applies to attribute values, specific character
data entities, and system and public identifiers, makes the
distinction between data within markup and other data clear
to human readers of the RAST result.

14.6.13 SGML subdocument entities1)

[a] parse subdocument = “rast-parse-subdoc: ”,
(“yes” | “no”)

A parse subdocument processing instruction indicates
whether or not a following external entity information
for an SGML subdocument entity includes a parsed
subdocument. When RAST encounters a parse subdoc-
ument processing instruction, it adds it to the end of a list
of saved parsed subdocument processing instructions.
When a reference to an SGML subdocument entity
occurs, or the name of an SGML subdocument entity
occurs as the value of a general entity name attribute or

1) Recall from 14.3 that productions for processing instructions that occur within test cases are identified by letters to distinguish
them from the productions identified by numbers that define the RAST result.

17

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

a token in the value of a general entity name list
attribute, RAST removes the parse subdocument pro-
cessing instruction at the beginning of the list. If the
processing instruction specifies no, or if the list was
empty, RAST does not output a parsed subdocument in
the entity’s external entity information. If the processing
instruction specifies yes, RAST outputs a parsed
subdocument.

SGML subdocument entity names in attribute values are
processed in the order RAST reports them. In particular,
if an element has two general entity name attributes and
the values of both are names of SGML subdocument
entities, RAST uses the first applicable parse subdocu-
ment processing instruction to determine whether to
report a parsed subdocument for the value of the
attribute whose name lexicographically precedes the
other. If the value of a general entity name list attribute
contains multiple tokens that are names of SGML sub-
document entities, RAST applies parse subdocument
processing instructions to the tokens in the order they
appear in the attribute value.

If an SGML subdocument entity for which the applica-
ble processing instruction specifies yes is not a valid
SGML document, RAST outputs #ERROR as the result
of the entire document; in other words, RAST does not
output the error indication simply as a parsed subdocu-
ment for the invalid subdocument. Otherwise, if such an
entity contains a processing instruction with system data
beginning rast that does not meet the requirements of
this subsubclause or of 14.6.14.1 or 14.6.15, RAST out-
puts #RAST-PI-ERROR as the result of the entire
document.

14.6.14 LINK

This subsubclause describes how RAST reports the
optional link features of SGML.

14.6.14.1 Processing instructions used with link
features

[b] active lpd = “rast-active-lpd:”, Name, (“,”,
Name)∗

[c] link rule selection = “rast-link-rule:”, String

RAST interprets the first active lpd or active dtd (see
14.6.15) processing instruction to appear in the docu-
ment. Each Name in an active lpd processing instruction
is that of a link type declaration to be made active. If the
naming rules of the concrete syntax specify uppercase
substitution for general names, all letters in the Name
must appear in uppercase.

NOTE – When the naming rules specify uppercase substi-
tution, a Name that appears with some lowercase letters in
a link type declaration must appear with all uppercase let-

ters in a processing instruction. This requirement on
processing instructions allows RAST to process tests
involving the optional link features regardless of whether
letters in a link type name appear in uppercase or lowercase.
Without it, an implementation of RAST would need access
to the naming rules of the concrete syntax to investigate an
SGML system’s support of the uppercase substitution spec-
ified in ISO 8879. Since the naming rules are not included
in ESIS, the above requirement on processing instructions
increases the feasibility of implementing RAST in any par-
ticular ESIS-based SGML system.

The following conditions are errors that cause RAST to
output #RAST-PI-ERROR as the result of the entire
document:

– The processing instruction appears after the start
of the base document type declaration;

– A Name in the active lpd is not the link type name
of a link type declaration in the prolog;

– The same string is used as more than one Name in
the active lpd;

– The processing instruction lists more Names than
the SGML declaration permits to be active;

– The source document type name in an explicit or
implicit link specification is not that of the base doc-
ument type declaration.

A link rule selection appears in the document instance.
It specifies the value of a link attribute to use for select-
ing a link rule when the next element starts. In
particular, RAST selects a link rule that has at least one
attribute whose interpreted and, if the attribute is not
character data, tokenized value is the String in the link
rule selection.

A sequence of adjacent link rule selections specifies link
attributes for successive following elements. Such a
sequence is useful when a test case involves a sequence
of omitted start-tags.

The following conditions are errors that cause RAST to
output #RAST-PI-ERROR as the result of the entire
document:

– No link rule selection is given prior to an element
with more than one applicable link rule;

– More than one rule, or none, have at least one
attribute whose interpreted, tokenized value is String.

14.6.14.2 Active links

[26] active link [1]= “#ACTIVE-LINK=”, Name, LE,
(“#INITIAL”, LE,
result element specification[27]+)?,
“#END-ACTIVE-LINK”, LE

18

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

[27] result element specification [26, 30]= “[”, Name,
LE, attribute information[8]+, “]”, LE

RAST generates an active link for each active link type
declaration. The Name in an active link is that of an
active link type declaration. The Name in a result ele-
ment specification is the generic identifier of the result
element. If present, #INITIAL introduces the result ele-
ment specifications of link rules whose source element
specification is implied in the initial link set. If there is
more than one active link, they appear in the same order
as the link names appear in the active lpd processing
instruction; the result element specifications appear in
the lexicographic order of the Names.

14.6.14.3 Simple link information

[28] simple link information [3]=
“#SIMPLE-LINK=”, Name, LE,
attribute information[8]∗,
“#END-SIMPLE-LINK”, LE

RAST reports the link type name and attribute informa-
tion for each active simple link in simple link
information at the beginning of the document element.
The simple link information data appear in the order the
link type names appeared in the active lpd processing
instruction.

NOTE – RAST produces both an active link and simple link
information for each active simple link.

14.6.14.4 Link Information

[29] link information [6]= (link set information[30],
link rule information[31]?) |
link rule information[31]

[30] link set information [29]=
“#LINK-SET-INFO”, LE,
result element specification[27]+

[31] link rule information [29]= “#LINK-RULE”, LE,
attribute information[8]∗,
link result[32]?

[32] link result [31]= “#RESULT=”, ((Name, LE,
attribute information[8]∗) |
(“#IMPLIED”, LE))

If there is a current link set, RAST includes link infor-
mation within an element start. The link information
includes link set information if the current link set has
link rules whose source element specifications are
implied. In this case, the rules are listed in the lexico-
graphic order of the Names in the result element
specifications.

If the started element is an associated element type for a
link rule in the current link set, RAST reports link rule

information. Any attribute information reports the link
attributes of the selected rule, determined as described
in 14.6.14.1.

A link result is included in the link rule information if
the active link is an explicit link. It gives the result ele-
ment specification with any result attributes.

RAST reports link set information within an element
end if the link set current after the element has link rules
whose source element specifications are implied. RAST
also reports link set information after a link set use dec-
laration if the specified link set has link rules whose
source element specifications are implied.

14.6.15 CONCUR

[d] active dtd = “rast-active-dtd:”, Name, (“,”,
Name)∗

[33] concurrent document element [1]=
“#CONCUR=”, Name, LE,
parsed element[4]

RAST interprets the first active dtd or active lpd (see
14.6.14) processing instruction to appear in the docu-
ment. Each Name in an active dtd processing instruction
is that of a document type declaration to be made active.
If the naming rules of the concrete syntax specify upper-
case substitution for general names, all letters in the
Name must appear in uppercase.The following condi-
tions are errors:

– The processing instruction appears after the start
of the base document type declaration;

– A Name in the active dtd is not the document type
name of a document type declaration in the prolog;

– The SGML declaration does not allow all the
specified document type declarations to be active.

If it uses an active dtd processing instruction, instead of
a base document element, RAST produces a concurrent
document element for each active document type decla-
ration, in the order their names appear in the active dtd
processing instruction. The Name in each concurrent
document element is that of the associated active docu-
ment type declaration.

15 The Reference Application for Capa-city
Testing (RACT)

To test conformance to the capacity constraints of
SGML, a test suite can include one document that
reaches each capacity defined in ISO 8879 and another
that barely exceeds it. A validating parser must correctly

19

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

process the first document and report an error on the sec-
ond. However, such tests are difficult to create using the
reference capacity set for two reasons. First, the limits in
the reference capacity set are large, and hence can only
be tested with large documents. Second, all the capaci-
ties in the reference capacity set are the same. It is
therefore impossible to exceed any other capacity with-
out exceeding “TOTALCAP”. There is no requirement
that validating or conforming SGML systems be able to
define a variant capacity set. RACT was therefore
defined to provide an optional method of evaluating this
aspect of SGML parsing. RACT reports a validating
parser's capacity calculations for an SGML document.
As with RAST, there is no requirement that a parser be
able to support RACT.

RACT generates one line for each capacity, in the order
given in figure 5 of ISO 8879 (which defines the refer-
ence capacity set). The line consists of the capacity
name, a single space, and the number of capacity points
used in that category in that document.

RACT is formally defined below, in the same notation
as that used in clause 14. Note that LE and nonnegative
integer are defined in clause 14. As in ISO 8879,
SPACE denotes the space character.

[34] RACT result = totalcap[35], entcap[36],
entchcap[37], elemcap[38], grpcap[39],
exgrpcap[40], exnmcap[41], attcap[42],
attchcap[43], avgrpcap[44], notcap[45],
notchcap[46], idcap[47], idrefcap[48],
mapcap[49], lksetcap[50], lknmcap[51]

[35] totalcap [34]= “TOTALCAP”, SPACE,
nonnegative integer[24], LE

[36] entcap [34]= “ENTCAP”, SPACE,
nonnegative integer[24], LE

[37] entchcap [34]= “ENTCHCAP”, SPACE,
nonnegative integer[24], LE

[38] elemcap [34]= “ELEMCAP”, SPACE,
nonnegative integer[24], LE

[39] grpcap [34]= “GRPCAP”, SPACE,
nonnegative integer[24], LE

[40] exgrpcap [34]= “EXGRPCAP”, SPACE,
nonnegative integer[24], LE

[41] exnmcap [34]= “EXNMCAP”, SPACE,
nonnegative integer[24], LE

[42] attcap [34]= “ATTCAP”, SPACE,
nonnegative integer[24], LE

[43] attchcap [34]= “ATTCHCAP”, SPACE,
nonnegative integer[24], LE

[44] avgrpcap [34]= “AVGRPCAP”, SPACE,
nonnegative integer[24], LE

[45] notcap [34]= “NOTCAP”, SPACE,
nonnegative integer[24], LE

[46] notchcap [34]= “NOTCHCAP”, SPACE,
nonnegative integer[24], LE

[47] idcap [34]= “IDCAP”, SPACE,
nonnegative integer[24], LE

[48] idrefcap [34]= “IDREFCAP”, SPACE,
nonnegative integer[24], LE

[49] mapcap [34]= “MAPCAP”, SPACE,
nonnegative integer[24], LE

[50] lksetcap [34]= “LKSETCAP”, SPACE,
nonnegative integer[24], LE

[51] lknmcap [34]= “LKNMCAP”, SPACE,
nonnegative integer[24], LE

The value of each nonnegative integer is the number of
points of the indicated capacity in the document.

16 Test suite reports

This clause describes how to report the results of testing
an SGML system with a test suite. The information
described here shall be accompanied by the documenta-
tion described in clause 6.

The performance of a particular SGML system on a par-
ticular test suite cannot be adequately reported by a
single score or quantity. Any attempt to do so might
result in a low score for a conforming system that does
not implement an optional feature repeatedly tested in
the test suite. Furthermore, a user of SGML who has no
need for some required construct may prefer to select a
system that has incorrectly implemented that required
construct in favor of a conforming system that does not
provide an optional feature the user plans to use. There-
fore, results of running a test suite are reported as
described below:

– The report lists the following for each category of
test:

– the number of tests in the category;

– if the tested system includes a validating
parser, the number of tests in the category that the
test suite and the tested system

– agree are conforming documents;

– agree are erroneous documents;

20

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

– do not agree to be conforming or erroneous.

– if both the test suite and the tested system sup-
port RAST, the number of tests in the category that
are conforming documents and for which the
RAST results produced by the tested system

– are the same as those provided with the test
suite;

– differ from those provided with the test suite;

– cannot be compared to those provided with
the test suite because only one of the two
implementations of RAST supports an optional
feature used in the test;

– if the test suite and the tested system both sup-
port RACT, the number of tests in the category for
which the RACT result generated by the tested sys-
tem is

– the same as that provided with the test suite;

– different from that provided with the test
suite;

– names of tests on which the test suite and the
tested system produce different results;

– a pairwise comparison of all test categories, con-
structed as follows from the category comments at the
beginning of the tests. Each test category is compared
to every other category by counting the number of
tests in which both categories appear in the com-
ments. This information helps the reader of the report
determine the significance of the results. For exam-

ple, suppose a tested system has correctly
implemented a construct x, but misinterpreted a con-
struct y. If all tests of x happen to involve y as well,
the high count of tests in which the system and the test
suite produce different results might suggest a prob-
lem in the implementation of x. Information about the
overlap of x and y tests, however, informs the user
that the problem might lie in the latter category.

NOTE – In practice, a test suite may be developed in con-
junction with two or more implementations of RAST. All
should produce the same results for every test. If this is not
the case, and the implementor of the test suite cannot deter-
mine which result is correct, all variants shall be distributed
with the test suite. The documentation shall clearly identify
tests for which multiple results are provided.

17 Testing SDIF data streams

A test suite that evaluates a system's use of SDIF shall
be comprehensive. That is, a general purpose SGML
test suite that includes tests of SDIF shall explore con-
formance to every aspect of ISO 9069. A test suite
restricted to a particular SGML application that uses
SDIF shall provide tests to explore every aspect of SDIF
relevant to that application. Every general purpose
SGML test suite that tests SDIF shall test both the cre-
ation of an SDIF data stream from separate entities and
the separation of an SDIF data stream into multiple enti-
ties. Applying these operations in sequence should
result in recreation of the original entities, with the pos-
sible exception that corresponding entity declarations
may have different system identifiers.

21

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

22

23

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

Annex A
(normative)

The ISO 8879 Element Structure Information Set (ESIS)

This annex describes the Element Structure Information
Set (ESIS) which is implicit in ISO 8879.

NOTE – The provisions of clause 3 regarding conflict with
ISO 8879 apply.

There are two kinds of SGML application (and therefore
two kinds of conforming SGML application):

a) A structure-controlled SGML application
operates only on the element structure that is
described by SGML markup, never on the markup
itself;

b) A markup-sensitive SGML application can act
on the actual SGML markup and can act on element
structure information as well. Examples include
SGML-sensitive editors and markup validators.

The set of information that is acted upon by implemen-
tations of structure-controlled applications is called the
“element structure information set” (ESIS). ESIS
includes properties of the element structure itself, plus
other information. ESIS is implicit in ISO 8879, but is
not defined there explicitly. The purpose of this annex is
to provide that explicit definition.

ESIS is particularly significant for SGML conformance
testing because two SGML documents are equivalent
documents if, when they are parsed with respect to iden-
tical DTDs and LPDs, their ESIS is identical. All
structure-controlled applications must therefore pro-
duce identical results for all equivalent SGML
documents. In contrast, not all markup-sensitive appli-
cations will produce identical results from equivalent
documents. (For example, a program that prints com-
ment declarations or that counts the number of omitted
end-tags.)

ESIS information is exchanged between an SGML
parser and the rest of an SGML system that implements
a structure-controlled application. Although an imple-
mentation may choose to “wire in” some of ESIS, such
as the names of attributes, a structure-controlled appli-
cation need have no other knowledge of the prolog than
what ESIS provides.

A system implementing a structure-controlled applica-
tion is required to act only on ESIS information and on
the APPINFO parameter of the SGML declaration.

NOTES

1 This requirement does not prohibit a parser from
providing the same interface to both structure-controlled
and markup-sensitive applications, which could include

non-ESIS information (e.g., the date), and/or information
that could be derived from ESIS information (e.g., the list
of open elements).

2 The documentation of a conforming SGML system
that supports user-developed structure-controlled applica-
tions should make application developers aware of this
requirement. Such a system should facilitate conformance
to this requirement by distinguishing ESIS information
from non-ESIS in its interface to applications. Note 1 in
15.3.5 of ISO 8879 applies only to structure-controlled
applications.

In the following description of ESIS, information is
identified as being available at a particular point in the
parsed document. This identification should not be
interpreted as a requirement that the information actu-
ally be exchanged at that point – all or part of it could
have been exchanged at some other point. Similarly,
there is no constraint on the manner (e.g., number of
function calls) or format in which the exchanges take
place.

The ESIS description includes the information associ-
ated with all of the SGML optional features. When a
given feature is not in use, corresponding information is
not present in the document. ESIS information is trans-
mitted from the parser to the application unless
otherwise indicated.

ESIS information applies to a single parsed document
instance. Therefore, if concurrent instances are being
parsed, the applicable document type name must be
identified. This requirement also applies when parsing
intermediate instances in a chain of active links.

ESIS information consists of the identification of the
following occurrences, and the passing of the indicated
information for each:

a) Initialization

– The application must inform the SGML parser
of the active document types, the active link types,
or that parsing is to occur only with respect to the
base document type.

b) Start of document instance set

– For each active LPD, the link type name and
link set information (see (m) below) for the initial
link set.

c) Start of document element only

– For each active simple link, the link type name
and attribute information (see (j) below) for the

24

ISO/IEC 13673–1994(E) Intermediate Editor’s Draft 12/3/99

link attributes.

d) Start of any element

– Generic identifier;

– Attribute information for the start-tag;

– For each applicable link rule, attribute informa-
tion for the link attributes;

– The application must inform the SGML parser
which applicable link rule it chose;

– For the chosen link rule, the result GI and
attribute information for the result element;

– If the element has an associated link set, the
link set information.

e) End of any element, including elements declared
to be empty

– Generic identifier

– Link set information for the link set that is cur-
rent immediately after the element (including
processing any relevant “#POSTLINK”
parameter)

NOTE – If the element was empty, ESIS does not indicate
why it was empty; that is, whether it was declared to be
empty, or whether an explicit content reference occurred, or
whether it just happened to contain no data characters, sub-
elements, or other content.

f) End of document instance set

NOTE – Processing instructions could occur between the
end of the document element and the end of the document
instance set.

g) Processing instruction

– System data

h) Link set use declaration

– Link set information

i) Data

– Includes no ignored characters (e.g., record
starts);

– Includes only significant record ends, with no
indication of how significance was determined.
Characters entered via character references are not
distinguished in any way. Implementation-specific
means can be used to represent bit combinations
that the application cannot accept directly.

NOTES

1 Such bit combinations may be those of non-SGML
characters entered via character references, but no
significance is attached to this coincidence.

2 Bit combinations of non-SGML characters that
occurred directly in the source text would have been
flagged as errors, and would therefore never be treated as
data.

j) Attribute information

– All attribute values must be reported and asso-
ciated with their attribute names.

NOTES

1 For example, a parser could supply the attribute
names with each value, or supply the values in an order
that corresponds to a previously supplied list of names.

2 The order of the tokens in a tokenized attribute value
shall be preserved as originally specified.

– Each unspecified impliable attribute must be
identified;

NOTE – For example, a parser could identify such
attributes explicitly, or it could allow the application to
determine them by comparing the identified specified
attribute values to a previously supplied list of attribute
names.

– There shall be no indication of whether an
attribute value was the default value;

– The order in which attributes are specified in
the attribute specification list is not part of the
ESIS;

– General entity name attribute values include
the entity name and entity text. The entities them-
selves are not treated as having been referenced;

NOTE – An application can use system services to parse the
entities, but such parsing is outside the context of the cur-
rent document.

– For notation attributes, the attribute value
includes the notation name and notation identifier;

– For CDATA attributes, references to SDATA
entities in attribute value literals are resolved. The
replacement text is distinguished from the sur-
rounding text and identified as an individual
SDATA entity;

– For CDATA attributes, references to CDATA
entities in attribute value literals are resolved. The
replacement text is not distinguished from the sur-
rounding text.

k) References to internal entities

– The information passed to the application
depends on the entity type:

SDATA: replacement text, identified as an individual
SDATA entity.

PI: replacement text, identified as a processing
instruction but not as an entity.

25

Intermediate Editor’s Draft 12/3/99 ISO/IEC 13673–1994(E)

– For other references, nothing is passed to the
application.

NOTE – The replacement text is parsed in the context in
which the reference occurred, which can result in other
ESIS information being passed.

l) References to external entities

The information passed to the application depends on
the entity type:

– For data entities, the entity name and entity text
are passed. If a notation is named, the notation
name, notation identifier, and attribute information
for the data attributes are also passed.

– For SGML text entities, nothing is passed to the
application.

NOTE – The replacement text is parsed in the context in
which the reference occurred, which can result in other
ESIS information being passed.

– For SUBDOC entities, the entity name and
entity text are passed. The application can require
that the subdocument entity be parsed at the point
at which the reference occurred.

NOTE – Parsing of the subdocument entity can result in
other ESIS information being passed. The occurrence of the
end of the document instance set of the subdocument entity
will indicate that subsequent ESIS information applies to
the element from which the subdocument entity was
referenced.

m) Link set information

– All link rules whose source element specifica-
tion is implied.

26

ANSI X3.190-1992 Intermediate Editor’s Draft 12/3/99

Annex B
(informative)

Sample tests and RAST results

This annex contains several typical test cases and their RAST results. These examples illustrate both ordinary tests and
RAST output.

B.1 A typical conforming document

The following is a typical test of a conforming document:

<!DOCTYPE g01b2404 [
<!--Categories:
element
markup declaration
prolog
-->
<!--
#PCDATA is a primitive content token (Clause 11.2.4,
Paragraph 4, Production 129).
-->
<!ELEMENT g01b2404 - - (g01-g1)>
<!ELEMENT g01-g1 - - (#PCDATA)>
]>
<g01b2404>
<g01-g1>
parsed character data
</g01-g1>
</g01b2404>

Its RAST result is:

[G01B2404]
[G01-G1]
|parsed character data|
[/G01-G1]
[/G01B2404]

B.2 An erroneous prolog

The following is a typical test of a document with an erroneous prolog:

<!DOCTYPE p01b2201 [
<!--Categories:
element
markup declaration
prolog
-->
<!--
Omitted tag minimization includes start-tag minimization and
end-tag minimization (Clause 11.2.2, Paragraph 1,
Production 122).
-->

27

Intermediate Editor’s Draft 12/3/99 ANSI X3.190-1992

<!ELEMENT p01b2201 - - (p01-g1)>
<!ELEMENT p01-g1 - (#PCDATA)>
]>
<p01b2201>
<p01-g1>
</p01-g1>
</p01b2201>

Its RAST result is:

#ERROR

B.3 Impliable attributes

The next example shows processing of impliable attributes:

<!DOCTYPE g02b3407 [
<!--Categories:
attribute
document instance
-->
<!--
A default value #IMPLIED means the attribute is an impliable
attribute (Clause 11.3.4, Paragraph 7).
-->
<!ELEMENT g02b3407 - - (g02-g1)+>
<!ELEMENT g02-g1 - - (#PCDATA)>
<!ATTLIST g02-g1 g02-a1 NAME #IMPLIED>
]>
<g02b3407>
<g02-g1 g02-a1="g02-v1">
Impliable attribute specified.
</g02-g1>
<g02-g1>
Impliable attribute omitted.
</g02-g1>
</g02b3407>

RAST produces the following:

[G02B3407]
[G02-G1
G02-A1=
!G02-V1!
]
|Impliable attribute specified.|
[/G02-G1]
[G02-G1
G02-A1=
#IMPLIED
]
|Impliable attribute omitted.|
[/G02-G1]
[/G02B3407]

28

ANSI X3.190-1992 Intermediate Editor’s Draft 12/3/99

B.4 A general entity name attribute

Use of the name of a data entity as the value of a general entity name attribute is illustrated in the following test case:

<!DOCTYPE g0379431 [
<!--Categories:
attribute
document instance
external identifier
general entity
notation
-->
<!--
The value of a general entity name attribute can be the name of a
data entity (Clause 7.9.4.3, Paragraph 1).
-->
<!ELEMENT g0379431 - - (g03-g1+)>
<!ELEMENT g03-g1 - - EMPTY>
<!ATTLIST g03-g1 g03-a1 ENTITY #IMPLIED>
<!NOTATION g03-n1 SYSTEM "g03-x1">
<!ATTLIST #NOTATION g03-n1 g03-a2 NAME #IMPLIED
 g03-a3 NAME #IMPLIED>
<!ENTITY g03-e1 SYSTEM "g03-x2" NDATA g03-n1
 [g03-a2="g03-v1" g03-a3="g03-v2"]>
<!ENTITY g03-e2 SDATA "g03-x3">
]>
<g0379431>
<g03-g1 g03-a1="g03-e1">
<g03-g1 g03-a1="g03-e2">
</g0379431>

RAST generates:

[G0379431]
[G03-G1
G03-A1=
!g03-e1!
#NDATA-EXTERNAL
#SYSTEM
!g03-x2!
#NOTATION=G03-N1
#SYSTEM
!g03-x1!
G03-A2=
!G03-V1!
G03-A3=
!G03-V2!
#END-ENTITY
]
[/G03-G1]
[G03-G1
G03-A1=
!g03-e2!
#SDATA-INTERNAL
!g03-x3!

29

Intermediate Editor’s Draft 12/3/99 ANSI X3.190-1992

#END-ENTITY
]
[/G03-G1]
[/G0379431]

B.5 LINK

Suppose an SGML declaration specifies LINK EXPLICIT YES and consider the following SGML document:

<?rast-active-lpd:G04-T1>
<!DOCTYPE g04c2203 [
<!--Categories:
attribute
document instance
explicit link
processing instruction
-->
<!--
Result attribute specifications can appear in explicit link rules
(Clause 12.2.2, Paragraph 3, Production 167).
-->
<!ELEMENT g04c2203 - - (g04-g1+)>
<!ELEMENT g04-g1 - - EMPTY>
]>
<!DOCTYPE g04-g2 [
<!ELEMENT g04-g2 - - (g04-g3|g04-g4)*>
<!ELEMENT g04-g3 - - EMPTY>
<!ELEMENT g04-g4 - - EMPTY>
<!ATTLIST g04-g3 g04-a1 NAME #IMPLIED>
<!ATTLIST g04-g4 g04-a2 NAME #IMPLIED>
]>
<!LINKTYPE g04-t1 g04c2203 g04-g2 [
<!ATTLIST g04-g1 g04-a3 NAME #IMPLIED>
<!LINK #INITIAL
g04-g1 [g04-a3="g04-v1"] g04-g3 [g04-a1="g04-v2"]
g04-g1 [g04-a3="g04-v3"] g04-g4 [g04-a2="g04-v4"]
>
]>
<g04c2203>
<?rast-link-rule:G04-V3>
<g04-g1>
<?rast-link-rule:G04-V1>
<g04-g1>
</g04c2203>

The RAST output is shown below:

[?
|rast-active-lpd:G04-T1|
]
#ACTIVE-LINK=g04-T1
#END-ACTIVE-LINK
[G04C2203]
[?

30

ANSI X3.190-1992 Intermediate Editor’s Draft 12/3/99

|rast-link-rule:G04-V3|
]
[G04-G1
#LINK-RULE
G04-A3=
!G04-V3!
#RESULT=G04-G4
G04-A2=
!G04-V4!
]
[/G04-G1]
[?
|rast-link-rule:G04-V1|
]
[G04-G1
#LINK-RULE
G04-A3=
!G04-V1!
#RESULT=G04-G3
G04-A1=
!G04-V2!
]
[/G04-G1]
[/G04C2203]

B.6 CONCUR

With an SGML declaration that specifies CONCUR YES, the following document indicates that document instances
of different document types can occur concurrently:

<?rast-active-dtd:G0577003,G05-G2>
<!DOCTYPE g0577003 [
<!--Categories:
CONCUR
document instance
processing instruction
-->
<!--
Document instances of different document types can occur concurrently
(Clause 7.7, Paragraph 3).
-->
<!ELEMENT g0577003 - - (g05-g1)+>
<!ELEMENT g05-g1 - - (#PCDATA)>
]>
<!DOCTYPE g05-g2 [
<!ELEMENT g05-g2 - - (g05-g3)+>
<!ELEMENT g05-g3 - - (#PCDATA)>
]>
<(g0577003)g0577003>
<(g05-g2)g05-g2>
<(g0577003)g05-g1>
<(g05-g2)g05-g3>
one

31

Intermediate Editor’s Draft 12/3/99 ANSI X3.190-1992

</(g05-g2)g05-g3>
<(g05-g2)g05-g3>
two
</(g0577003)g05-g1>
<(g0577003)g05-g1>
three
</(g05-g2)g05-g3>
<(g05-g2)g05-g3>
four
</(g05-g2)g05-g3>
</(g0577003)g05-g1>
</(g05-g2)g05-g2>
</(g0577003)g0577003>

RAST reports the following:

[?
|rast-active-dtd:G0577003,G05-G2|
]
#CONCUR=G0577003
[G0577003]
[G05-G1]
|one|
#RE
|two|
[/G05-G1]
[G05-G1]
|three|
#RE
|four|
[/G05-G1]
[/G0577003]
#CONCUR=G05-G2
[G05-G2]
[G05-G3]
|one|
[/G05-G3]
[G05-G3]
|two|
#RE
|three|
[/G05-G3]
[G05-G3]
|four|
[/G05-G3]
[/G05-G2]

B.7 SUBDOC

Consider an SGML declaration that specifies SUBDOC YES number, where number is at least 1, the following doc-
ument illustrates testing of SGML subdocument entities:

<!DOCTYPE g06a5504 [
<!--Categories:

32

ANSI X3.190-1992 Intermediate Editor’s Draft 12/3/99

attribute
external identifier
general entity
processing instruction
SUBDOC
-->
<!--
An entity type of "SUBDOC" indicates the entity is an SGML subdocument
 entity (Clause 10.5.5, Paragraph 4). Such an entity can be used in an
 entity reference and its name may appear as a token in the value of a
 general entity name or general entity name list attribute.
-->
<!ELEMENT g06a5504 - - ANY>
<!ELEMENT g06-g1 - - EMPTY>
<!ATTLIST g06-g1 g06-a1 ENTITY #REQUIRED>
<!ENTITY g06-e1 SYSTEM "g06-x1" SUBDOC>
]>
<g06a5504>
<?rast-parse-subdoc yes>
&g06-e1;
<?rast-parse-subdoc yes>
<g06-g1 g06-a1="g06-e1">
</g06a5504>

Suppose the system identifier “g06-x1” identifies the following entity:

<!DOCTYPE g06-g2 [
<!ELEMENT g06-g2 - - ANY>
]>
<g06-g2>
</g06-g2>

RAST reports the following:

[G06A5504]
[?
|rast-parse-subdoc yes|
]
[&G06-E1
#SUBDOC
#SYSTEM
!g06-x1!
#PARSED-SUBDOCUMENT
[G06-G2]
[/G06-G2]
]
[?
|rast-parse-subdoc yes|
]
[G06
G06-A1=
!g06-e1!
#SUBDOC
#SYSTEM
!g06-x1!
#PARSED-SUBDOCUMENT

33

Intermediate Editor’s Draft 12/3/99 ANSI X3.190-1992

[G06-G2]
[/G06-G2]
#END-ENTITY
]
[/G06]
[/G06A5504]

