
© ISO/IEC 2002 – All rights reserved

ISO/IEC JTC 1/SC 34

Date: 2002-06-25

ISO/IEC DIS 19757-2

ISO/IEC JTC 1/SC 34/WG 1

Secretariat: ANSI

Document Schema Definition Languages (DSDL) — Part 2: Grammar-based
validation — RELAX NG

Warning

This document is not an ISO International Standard. It is distributed for review and comment. It is subject to
change without notice and may not be referred to as an International Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of
which they are aware and to provide supporting documentation.

Document type: International Standard
Document subtype:
Document stage: (40) Enquiry
Document language: E

ISO/IEC DIS 19757-2

ii © ISO/IEC 2002 – All rights reserved

Copyright notice

This ISO document is a Draft International Standard and is copyright-protected by ISO. Except as permitted under
the applicable laws of the user's country, neither this ISO draft nor any extract from it may be reproduced, stored
in a retrieval system or transmitted in any form or by any means, electronic, photocopying, recording or otherwise,
without prior written permission being secured.

Requests for permission to reproduce should be addressed to either ISO at the address below or ISO's member
body in the country of the requester.

ISO copyright office
Case postale 56 · CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.ch
Web www.iso.ch

Reproduction may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

ISO/IEC DIS 19757-2

iii© ISO/IEC 2002 – All rights reserved

Contents Page

Foreword.. v

Introduction... vi

1 Scope... 1

2 Normative references... 1

3 Terms and definitions... 1

4 Notation... 4
4.1 EBNF.. 4
4.2 Inference rules.. 4
4.2.1 Variables.. 4
4.2.2 Propositions.. 5
4.2.3 Expressions.. 6

5 Data model.. 6

6 Full syntax... 7

7 Simplification.. 9
7.1 General.. 9
7.2 Annotations... 9
7.3 Whitespace.. 9
7.4 datatypeLibrary attribute.. 9
7.5 type attribute of value element.. 9
7.6 href attribute.. 9
7.7 externalRef element.. 10
7.8 include element... 10
7.9 name attribute of element and attribute elements... 10
7.10 ns attribute.. 10
7.11 QNames... 11
7.12 div element.. 11
7.13 Number of child elements.. 11
7.14 mixed element... 11
7.15 optional element... 11
7.16 zeroOrMore element... 12
7.17 Constraints.. 12
7.18 combine attribute.. 12
7.19 grammar element.. 13
7.20 define and ref elements.. 13
7.21 notAllowed element.. 13
7.22 empty element... 14

8 Simple syntax.. 14

9 Semantics.. 15
9.1 Inference rules.. 15
9.2 Name classes.. 15
9.3 Patterns... 16
9.3.1 choice pattern... 16
9.3.2 group pattern... 16
9.3.3 empty pattern.. 16
9.3.4 text pattern.. 16
9.3.5 oneOrMore pattern.. 16
9.3.6 interleave pattern.. 17
9.3.7 element and attribute pattern... 17
9.3.8 data and value pattern.. 17
9.3.9 Built-in datatype library.. 18

ISO/IEC DIS 19757-2

iv © ISO/IEC 2002 – All rights reserved

9.3.10 list pattern... 18
9.4 Validity... 19

10 Restrictions... 19
10.1 General.. 19
10.2 Prohibited paths.. 19
10.2.1 General.. 19
10.2.2 attribute pattern.. 19
10.2.3 oneOrMore pattern.. 20
10.2.4 list pattern... 20
10.2.5 except element in data pattern.. 20
10.2.6 start element... 20
10.3 String sequences.. 21
10.4 Restrictions on attributes.. 22
10.5 Restrictions on interleave.. 22

11 Conformance... 23

Annex A (normative) RELAX NG schema for RELAX NG.. 24

Annex B (informative) Examples... 30
B.1 Data model.. 30
B.2 Full syntax example.. 31
B.3 Simple syntax example.. 31
B.4 Validation example... 32

Bibliography... 34

ISO/IEC DIS 19757-2

v© ISO/IEC 2002 – All rights reserved

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission)
form the specialized system for worldwide standardization. National bodies that are members of ISO or IEC
participate in the development of International Standards through technical committees established by the
respective organization to deal with particular fields of technical activity. ISO and IEC technical committees
collaborate in fields of mutual interest. Other international organizations, governmental and non-governmental, in
liaison with ISO and IEC, also take part in the work. In the field of information technology, ISO and IEC have
established a joint technical committee, ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

ISO/IEC 19757-2 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology,
Subcommittee SC 34, Document Description and Processing Languages.

ISO/IEC 19757 consists of the following parts, under the general title Document Schema Definition Languages
(DSDL):

— Part 0: Overview

— Part 1: Interoperability framework

— Part 2: Grammar-based validation — RELAX NG

— Part 3: Rule-based validation — Schematron

— Part 4: Selection of validation candidates

— Part 5: Datatypes

— Part 6: Path-based integrity constraints

— Part 7: Character reportoire validation

— Part 8: Declarative document manipulation

— Part 9: Datatype- and namespace-aware DTDs

ISO/IEC DIS 19757-2

vi © ISO/IEC 2002 – All rights reserved

Introduction

The structure of this part of ISO/IEC 19757 is as follows. Clause 5 describes the data model, which is the
abstraction of an XML document used throughout the rest of the document. Clause 6 describes the syntax of a
RELAX NG schema. Clause 7 describes a sequence of transformations that are applied to simplify a RELAX NG
schema, and also specifies additional requirements on a RELAX NG schema. Clause 8 describes the syntax that
results from applying the transformations; this simple syntax is a subset of the full syntax. Clause 9 describes the
semantics of a correct RELAX NG schema that uses the simple syntax; the semantics specify when an element is
valid with respect to a RELAX NG schema. Clause 10 describes requirements that apply to a RELAX NG schema
after it has been transformed into simple form. Finally, Clause 11 describes conformance requirements for RELAX
NG validators.

This part of ISO/IEC 19757 is based on the RELAX NG Specification[1]. A tutorial for RELAX NG is available
separately (see the RELAX NG Tutorial[2]).

DRAFT INTERNATIONAL STANDARD ISO/IEC DIS 19757-2

1© ISO/IEC 2002 – All rights reserved

Document Schema Definition Languages (DSDL) — Part 2:
Grammar-based validation — RELAX NG

1 Scope

This part of ISO/IEC 19757 specifies RELAX NG, a schema language for XML. A RELAX NG schema specifies a
pattern for the structure and content of an XML document. The pattern is specified by using a regular tree
grammar. This part of ISO/IEC 19757 establishes requirements for RELAX NG schemas and specifies when an
XML document matches the pattern specified by a RELAX NG schema.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references,
only the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

NOTE Each of the following documents has a unique identifier that is used to cite the document in the text. The unique
identifier consists of the part of the reference up to the first comma.

W3C XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, 6 October 2000,
available at <http://www.w3.org/TR/2000/REC-xml-20001006>

W3C XML-Names, Namespaces in XML, W3C Recommendation, 14 January 1999, available at <http://www.w3.
org/TR/1999/REC-xml-names-19990114/>

W3C XLink, XML Linking Language (XLink) Version 1.0, W3C Recommendation, 27 June 2001, available at
<http://www.w3.org/TR/2001/REC-xlink-20010627/>

W3C XML-Infoset, XML Information Set, W3C Recommendation, 24 October 2001, available at <http://www.w3.
org/TR/2001/REC-xml-infoset-20011024/>

IETF RFC 2045, Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies,
Internet Standards Track Specification, November 1996, available at <http://www.ietf.org/rfc/rfc2045.txt>

IETF RFC 2046, Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, Internet Standards Track
Specification, November 1996, available at <http://www.ietf.org/rfc/rfc2046.txt>

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Internet Standards Track Specification,
August 1998, available at <http://www.ietf.org/rfc/rfc2396.txt>

IETF RFC 2732, Format for Literal IPv6 Addresses in URL's, Internet Standards Track Specification, December
1999, available at <http://www.ietf.org/rfc/rfc2732.txt>

IETF RFC 3023, XML Media Types, Internet Standards Track Specification, August 1998, available at <http://
www.ietf.org/rfc/rfc3023.txt>

3 Terms and definitions

For the purposes of this part of ISO/IEC 19757, the following terms and definitions apply.

3.1
resource
something with identity, potentially addressable by a URI

http://www.w3.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2046.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc3023.txt
http://www.ietf.org/rfc/rfc3023.txt

ISO/IEC DIS 19757-2

2 © ISO/IEC 2002 – All rights reserved

3.2
URI
compact string of characters that uses the syntax defined in IETF RFC 2396 to identify an abstract or physical
resource

3.3
URI reference
URI or relative URI and optional fragment identifier

3.4
relative URI
form of URI reference that can be resolved with respect to a base URI to produce another URI

3.5
base URI
URI used to resolve relative URIs

3.6
fragment identifier
additional information in a URI reference used by a user agent after the retrieval action on a URI has been
successfully performed

3.7
instance
XML document that is being validated with respect to a RELAX NG schema

3.8
space character
character with the code value #x20

3.9
whitespace character
character with the code value #x20, #x9, #xA or #xD

3.10
name
pair of a URI and an NCName

3.11
namespace URI
URI that is part of a name

3.12
local name
NCName that is part of a name

3.13
NCName
string that matches the NCName production of W3C XML-Names

3.14
name class
specification of a set of names

3.15
pattern
part of a schema that can be matched against a set of attributes and a sequence of elements and strings

ISO/IEC DIS 19757-2

3© ISO/IEC 2002 – All rights reserved

3.16
foreign attribute
attribute with a name whose namespace URI is neither the empty string nor the RELAX NG namespace URI

3.17
foreign element
an element with a name whose namespace URI is not the RELAX NG namespace URI

3.18
full syntax
syntax of a RELAX NG grammar before simplification

3.19
simple syntax
syntax of a RELAX NG grammar after simplification

3.20
simplification
transformation of a RELAX NG schema in the full syntax to a schema in the simple syntax

3.21
datatype library
mapping from local names to datatypes

NOTE a datatype library is identified by a URI

3.22
datatype
set of strings together with an equivalence relation on that set

3.23
axiom
proposition that is provable unconditionally

3.24
inference rule
rule consisting of one or more positive or negative antecendents and exactly one consequent, which makes the
consequent provable if all the positive antecedents are provable and none of the negative antecendents is
provable

3.25
valid with respect to a schema
member of the set of XML documents described by the schema

3.26
schema
specification of a set of XML documents

3.27
grammar
start pattern together with a mapping from NCNames to patterns

3.28
correct schema
schema that satisfies all the requirements of this part of ISO/IEC 19757

ISO/IEC DIS 19757-2

4 © ISO/IEC 2002 – All rights reserved

3.29
validator
software module that determine whether a schema is correct and whether an instance is valid with respect to a
schema

3.30
path
list of NCNames separated by / or //

3.31
infoset
an abstraction of an XML document defined by W3C XML-Infoset

3.32
information item
constituent of an information set

3.33
data model
abstract representation of an XML document defined by this part of ISO/IEC 19757

3.34
XML document
string that is a well-formed XML document as defined in W3C XML

3.35
EBNF
Extended BNF
notation used to described context-free grammars

4 Notation

4.1 EBNF

This part of ISO/IEC 19757 uses EBNF notation to describe the full syntax and the simple syntax of RELAX NG. A
description of a grammar in EBNF consists of one or more production rules. Each production rule consists of the
name of a non-terminal, followed by ::=, followed by a list of alternatives separated by |. Within an alternative,
italic type is used to reference a non-terminal, concatenation indicates sequencing, [] indicates optionality, +
indicates repetition one or more times and * indicates repetition zero or more times; other characters in normal
type stand for themselves.

4.2 Inference rules

4.2.1 Variables

The symbol used for a variable indicates the variable's range as follows:

— n ranges over names

— nc ranges over name classes

— ln ranges over local names; a local name is a string that matches the NCName production of W3C XML-
Names, that is, a name with no colons

— u ranges over URIs

— cx ranges over contexts (as defined in Clause 5)

— a ranges over sets of attributes; a set with a single member is considered the same as that member

ISO/IEC DIS 19757-2

5© ISO/IEC 2002 – All rights reserved

— m ranges over sequences of elements and strings; a sequence with a single member is considered the same
as that member; the sequences ranged over by m may contain consecutive strings and may contain strings
that are empty; thus, there are sequences ranged over by m that cannot occur as the children of an element

— p ranges over patterns (elements matching the pattern production)

— s ranges over strings

— ws ranges over the empty sequence and strings that consist entirely of whitespace

— params ranges over sequences of parameters

— e ranges over elements

— ct ranges over content-types

4.2.2 Propositions

The following notation is used for propositions:

— n in nc means that name n is a member of name class nc

— cx ⊦ a; m =~ p means that with respect to context cx, the attributes a and the sequence of elements and
strings m matches the pattern p

— disjoint(a1, a2) means that there is no name that is the name of both an attribute in a1 and of an attribute in a2

— m1 interleaves m2; m3 means that m1 is an interleaving of m2 and m3

— cx ⊦ a; m =~weak p means that with respect to context cx, the attributes a and the sequence of elements and
strings m weakly matches the pattern p

— okAsChildren(m) means that the mixed sequence m can occur as the children of an element: it does not
contain any member that is an empty string, nor does it contain two consecutive members that are both
strings

— deref(ln) = <element> nc p </element> means that the grammar contains <define name="ln"> <element> nc
p </element> </define>

— datatypeAllows(u, ln, params, s, cx) means that in the datatype library identified by URI u, the string s
interpreted with context cx is a legal value of datatype ln with parameters params

— datatypeEqual(u, ln, s1, cx1, s2, cx2) means that in the datatype library identified by URI u, string s1
interpreted with context cx1 represents the same value of the datatype ln as the string s2 interpreted in the
context of cx2

— s1 = s2 means that s1 and s2 are identical

— valid(e) means that the element e is valid with respect to the grammar

— start() = p means that the grammar contains <start> p </start>

— groupable(ct1, ct2) means that the content-types ct1 and ct2 are groupable

— p :c ct means that pattern p has content-type ct

— incorrectSchema() means that the schema is incorrect

ISO/IEC DIS 19757-2

6 © ISO/IEC 2002 – All rights reserved

4.2.3 Expressions

The following notation is used for expressions in propositions:

— name(u, ln) returns a name with URI u and local name ln

— m1, m2 returns the concatenation of the sequences m1 and m2

— a1 + a2 returns the union of a1 and a2

— () returns an empty sequence

— { } returns an empty set

— "" returns an empty string

— attribute(n, s) returns an attribute with name n and value s

— element(n, cx, a, m) returns an element with name n, context cx, attributes a and mixed sequence m as
children

— max(ct1, ct2) returns the maximum of ct1 and ct2 where the content-types in increasing order are empty(),
complex(), simple()

— normalizeWhiteSpace(s) returns the string s, with leading and trailing whitespace characters removed, and
with each other maximal sequence of whitespace characters replaced by a single space character

— split(s) returns a sequence of strings one for each whitespace delimited token of s; each string in the
returned sequence will be non-empty and will not contain any whitespace

— context(u, cx) returns a context which is the same as cx except that the default namespace is u; if u is the
empty string, then there is no default namespace in the constructed context

— empty() returns the empty content-type

— complex() returns the complex content-type

— simple() returns the simple content-type

— [cx] within the start-tag of a pattern refers to the context of the pattern element

5 Data model

RELAX NG deals with XML documents representing both schemas and instances through an abstract data
model. XML documents representing schemas and instances shall be well-formed in conformance with W3C XML
and shall conform to the constraints of W3C XML-Names.

An XML document is represented by an element. An element consists of

— a name

— a context

— a set of attributes

— an ordered sequence of zero or more children; each child is either an element or a non-empty string; the
sequence never contains two consecutive strings

ISO/IEC DIS 19757-2

7© ISO/IEC 2002 – All rights reserved

A name consists of

— a string representing the namespace URI; the empty string has special significance, representing the
absence of any namespace

— a string representing the local name; this string matches the NCName production of W3C XML-Names

A context consists of

— a base URI

— a namespace map; this maps prefixes to namespace URIs, and also may specify a default namespace URI
(as declared by the xmlns attribute)

An attribute consists of

— a name

— a string representing the value

A string consists of a sequence of zero or more characters, where a character is as defined in W3C XML.

The element for an XML document is constructed from the infoset (see W3C XML-Infoset) of the XML document
as follows. The notation [x] refers to the value of the x property of an information item. An element is constructed
from a document information item by constructing an element from the [document element]. An element is
constructed from an element information item by constructing the name from the [namespace name] and [local
name], the context from the [base URI] and [in-scope namespaces], the attributes from the [attributes], and the
children from the [children]. The attributes of an element are constructed from the unordered set of attribute
information items by constructing an attribute for each attribute information item. The children of an element are
constructed from the list of child information items first by removing information items other than element
information items and character information items, and then by constructing an element for each element
information item in the list and a string for each maximal sequence of character information items. An attribute is
constructed from an attribute information item by constructing the name from the [namespace name] and [local
name], and the value from the [normalized value]. When constructing the name of an element or attribute from
the [namespace name] and [local name], if the [namespace name] property is not present, then the name is
constructed from an empty string and the [local name]. A string is constructed from a sequence of character
information items by constructing a character from the [character code] of each character information item.

It is possible for there to be multiple distinct infosets for a single XML document. This is because XML parsers are
not required to process all DTD declarations or expand all external parsed general entities. Amongst these
multiple infosets, there is exactly one infoset for which [all declarations processed] is true and which does not
contain any unexpanded entity reference information items. This is the infoset that is the basis for defining the
RELAX NG data model.

6 Full syntax

The following grammar in EBNF notation summarizes the syntax of RELAX NG. Although the notation is based on
the XML representation of an RELAX NG schema as a sequence of characters, the grammar operates at the data
model level. For example, although the syntax uses <text/>, an instance or schema can use <text></text> instead,
because they both represent the same element at the data model level. All elements shown in the grammar are
qualified with the namespace URI:

http://relaxng.org/ns/structure/1.0

The symbols QName and NCName are defined in W3C XML-Names. The anyURI symbol indicates a string that,
after escaping of disallowed values as described in Section 5.4 of W3C XLink, is a URI reference as defined in
IETF RFC 2396 (as modified by IETF RFC 2732). The symbol string matches any string.

ISO/IEC DIS 19757-2

8 © ISO/IEC 2002 – All rights reserved

In addition to the attributes shown explicitly, any element can have an ns attribute and any element can have a
datatypeLibrary attribute. The ns attribute can have any value. The value of the datatypeLibrary attribute shall
match the anyURI symbol as described in the previous paragraph; in addition, it shall not use the relative form of
URI reference and shall not have a fragment identifier; as an exception to this, the value may be the empty string.

Any element can also have foreign attributes in addition to the attributes shown in the grammar. A foreign
attribute is an attribute with a name whose namespace URI is neither the empty string nor the RELAX NG
namespace URI. Any element that cannot have string children (that is, any element other than value, param and
name) may have foreign child elements in addition to the child elements shown in the grammar. A foreign
element is an element with a name whose namespace URI is not the RELAX NG namespace URI. There are no
constraints on the relative position of foreign child elements with respect to other child elements.

Any element can also have as children strings that consist entirely of whitespace characters, where a whitespace
character is one of #x20, #x9, #xD or #xA. There are no constraints on the relative position of whitespace string
children with respect to child elements.

Leading and trailing whitespace is allowed for value of each name, type and combine attribute and for the content
of each name element.

pattern ::=
 <element name="QName"> pattern+ </element>
 | <element> nameClass pattern+ </element>
 | <attribute name="QName"> [pattern] </attribute>
 | <attribute> nameClass [pattern] </attribute>
 | <group> pattern+ </group>
 | <interleave> pattern+ </interleave>
 | <choice> pattern+ </choice>
 | <optional> pattern+ </optional>
 | <zeroOrMore> pattern+ </zeroOrMore>
 | <oneOrMore> pattern+ </oneOrMore>
 | <list> pattern+ </list>
 | <mixed> pattern+ </mixed>
 | <ref name="NCName"/>
 | <parentRef name="NCName"/>
 | <empty/>
 | <text/>
 | <value [type="NCName"]> string </value>
 | <data type="NCName"> param* [exceptPattern] </data>
 | <notAllowed/>
 | <externalRef href="anyURI"/>
 | <grammar> grammarContent* </grammar>
param ::=
 <param name="NCName"> string </param>
exceptPattern ::=
 <except> pattern+ </except>
grammarContent ::=
 start
 | define
 | <div> grammarContent* </div>
 | <include href="anyURI"> includeContent* </include>
includeContent ::=
 start
 | define
 | <div> includeContent* </div>
start ::=
 <start [combine="method"]> pattern </start>
define ::=
 <define name="NCName" [combine="method"]> pattern+ </define>
method ::=

ISO/IEC DIS 19757-2

9© ISO/IEC 2002 – All rights reserved

 choice
 | interleave
nameClass ::=
 <name> QName </name>
 | <anyName> [exceptNameClass] </anyName>
 | <nsName> [exceptNameClass] </nsName>
 | <choice> nameClass+ </choice>
exceptNameClass ::=
 <except> nameClass+ </except>

7 Simplification

7.1 General

The full syntax given in the previous clause is transformed into a simpler syntax by applying the following
transformation rules in order. The effect shall be as if each rule was applied to all elements in the schema before
the next rule is applied. A transformation rule may also specify constraints that shall be satisfied by a correct
schema. The transformation rules are applied at the data model level. Before the transformations are applied, the
schema is parsed into an element in the data model.

7.2 Annotations

Foreign attributes and elements are removed.

NOTE It is safe to remove xml:base attributes at this stage because xml:base attributes are used in determining the [base
URI] of an element information item, which is in turn used to construct the base URI of the context of an element. Thus, after a
document has been parsed into an element in the data model, xml:base attributes can be discarded.

7.3 Whitespace

For each element other than value and param, each child that is a string containing only whitespace characters is
removed.

Leading and trailing whitespace characters are removed from the value of each name, type and combine attribute
and from the content of each name element.

7.4 datatypeLibrary attribute

The value of each datatypeLibary attribute is transformed by escaping disallowed characters as specified in
Section 5.4 of W3C XLink.

For any data or value element that does not have a datatypeLibrary attribute, a datatypeLibrary attribute is added.
The value of the added datatypeLibrary attribute is the value of the datatypeLibrary attribute of the nearest
ancestor element that has a datatypeLibrary attribute, or the empty string if there is no such ancestor. Then, any
datatypeLibrary attribute that is on an element other than data or value is removed.

7.5 type attribute of value element

For any value element that does not have a type attribute, a type attribute is added with value token and the value
of the datatypeLibrary attribute is changed to the empty string.

7.6 href attribute

The value of the href attribute on an externalRef or include element is first transformed by escaping disallowed
characters as specified in Section 5.4 of W3C XLink. The URI reference is then resolved into an absolute form as
described in Section 5.2 of IETF RFC 2396 using the base URI from the context of the element that bears the href
attribute.

ISO/IEC DIS 19757-2

10 © ISO/IEC 2002 – All rights reserved

The value of the href attribute is used to construct an element (as specified in Clause 5). This shall be done as
follows. The URI reference consists of the URI itself and an optional fragment identifier. The resource identified by
the URI is retrieved. The result is a MIME entity (see IETF RFC 2045): a sequence of bytes labeled with a MIME
media type (see IETF RFC 2046). The media type determines how an element is constructed from the MIME
entity and optional fragment identifier. When the media type is application/xml or text/xml, the MIME entity shall
be parsed as an XML document in accordance with the applicable RFC (at the term of writing IETF RFC 3023)
and an element constructed from the result of the parse as specified in Clause 5. In particular, the charset
parameter shall be handled as specified by the RFC. This specification does not define the handling of media
types other than application/xml and text/xml. The href attribute shall not include a fragment identifier unless the
registration of the media type of the resource identified by the attribute defines the interpretation of fragment
identifiers for that media type.

NOTE IETF RFC 3023 does not define the interpretation of fragment identifiers for application/xml or text/xml.

7.7 externalRef element

An externalRef element is transformed as follows. An element is constructed using the URI reference that is the
value of href attribute as specified in 7.6. This element shall match the syntax for pattern. The element is
transformed by recursively applying the rules from this subclauses and from previous subclauses of this clause.
This shall not result in a loop. In other words, the transformation of the referenced element shall not require the
dereferencing of an externalRef element with an href attribute with the same value.

Any ns attribute on the externalRef element is transferred to the referenced element if the referenced element
does not already have an ns attribute. The externalRef element is then replaced by the referenced element.

7.8 include element

An include element is transformed as follows. An element is constructed using the URI reference that is the value
of href attribute as specified in 7.6. This element shall be a grammar element, matching the syntax for grammar.

This grammar element is transformed by recursively applying the rules from this subclause and from previous
subclauses of this clause. This shall not result in a loop. In other words, the transformation of the grammar
element shall not require the dereferencing of an include element with an href attribute with the same value.

Define the components of an element to be the children of the element together with the components of any div
child elements. If the include element has a start component, then the grammar element shall have a start
component. If the include element has a start component, then all start components are removed from the
grammar element. If the include element has a define component, then the grammar element shall have a define
component with the same name. For every define component of the include element, all define components with
the same name are removed from the grammar element.

The include element is transformed into a div element. The attributes of the div element are the attributes of the
include element other than the href attribute. The children of the div element are the grammar element (after the
removal of the start and define components described by the preceding paragraph) followed by the children of the
include element. The grammar element is then renamed to div.

7.9 name attribute of element and attribute elements

The name attribute on an element or attribute element is transformed into a name child element.

If an attribute element has a name attribute but no ns attribute, then an ns="" attribute is added to the name child
element.

7.10 ns attribute

For any name, nsName or value element that does not have an ns attribute, an ns attribute is added. The value
of the added ns attribute is the value of the ns attribute of the nearest ancestor element that has an ns attribute,
or the empty string if there is no such ancestor. Then, any ns attribute that is on an element other than name,
nsName or value is removed.

ISO/IEC DIS 19757-2

11© ISO/IEC 2002 – All rights reserved

NOTE 1 The value of the ns attribute is not transformed either by escaping disallowed characters, or in any other way,
because the value of the ns attribute is compared against namespace URIs in the instance, which are not subject to any
transformation.

NOTE 2 Since include and externalRef elements are resolved after datatypeLibrary attributes are added but before ns
attributes are added, ns attributes are inherited into external schemas but datatypeLibrary attributes are not.

7.11 QNames

For any name element containing a prefix, the prefix is removed and an ns attribute is added replacing any
existing ns attribute. The value of the added ns attribute is the value to which the namespace map of the context
of the name element maps the prefix. The context shall have a mapping for the prefix.

7.12 div element

Each div element is replaced by its children.

7.13 Number of child elements

A define, oneOrMore, zeroOrMore, optional, list or mixed element is transformed so that it has exactly one child
element. If it has more than one child element, then its child elements are wrapped in a group element. Similarly,
an element element is transformed so that it has exactly two child elements, the first being a name class and the
second being a pattern. If it has more than two child elements, then the child elements other than the first are
wrapped in a group element.

A except element is transformed so that it has exactly one child element. If it has more than one child element,
then its child elements are wrapped in a choice element.

If an attribute element has only one child element (a name class), then a text element is added.

A choice, group or interleave element is transformed so that it has exactly two child elements. If it has one child
element, then it is replaced by its child element. If it has more than two child elements, then the first two child
elements are combined into a new element with the same name as the parent element and with the first two child
elements as its children. For example,

<choice> p1 p2 p3 </choice>

is transformed to

<choice> <choice> p1 p2 </choice> p3 </choice>

This reduces the number of child elements by one. The transformation is applied repeatedly until there are exactly
two child elements.

7.14 mixed element

A mixed element is transformed into an interleaving with a text element:

<mixed> p </mixed>

is transformed into

<interleave> p <text/> </interleave>

7.15 optional element

An optional element is transformed into a choice element with two children, one child being the child of the
optional element and the other child being an empty element:

ISO/IEC DIS 19757-2

12 © ISO/IEC 2002 – All rights reserved

<optional> p </optional>

is transformed into

<choice> p <empty/> </choice>

7.16 zeroOrMore element

A zeroOrMore element is transformed into a choice element with two children, one child being a oneOrMore
element whose only child is the child of the zeroOrMore element and the other child being an empty element:

<zeroOrMore> p </zeroOrMore>

is transformed into

<choice> <oneOrMore> p </oneOrMore> <empty/> </choice>

7.17 Constraints

In this rule, no transformation is performed, but various constraints are checked.

NOTE 1 The constraints in this subclause, unlike the constraints specified in Clause 10, can be checked without resolving
any ref elements, and are accordingly applied even to patterns that will disappear during later stages of simplification because
they are not reachable (see 7.20) or because of notAllowed (see 7.21).

An except element that is a child of an anyName element shall not have any anyName descendant elements. An
except element that is a child of an nsName element shall not have any nsName or anyName descendant
elements.

A name element that occurs as the first child of an attribute element or as the descendant of the first child of an
attribute element and that has an ns attribute with value equal to the empty string shall not have content equal to
xmlns.

A name or nsName element that occurs as the first child of an attribute element or as the descendant of the first
child of an attribute element shall not have an ns attribute with value http://www.w3.org/2000/xmlns.

NOTE 2 The W3C XML-Infoset defines the namespace URI of namespace declaration attributes to be http://www.w3.
org/2000/xmlns.

A data or value element shall be correct in its use of datatypes. Specifically, the type attribute shall identify a
datatype within the datatype library identified by the value of the datatypeLibrary attribute. For a data element, the
parameter list shall be one that is allowed by the datatype (see 9.3.8).

7.18 combine attribute

For each grammar element, all define elements with the same name are combined together. For any name, there
shall not be more than one define element with that name that does not have a combine attribute. For any name,
if there is a define element with that name that has a combine attribute with the value choice, then there shall not
also be a define element with that name that has a combine attribute with the value interleave. Thus, for any
name, if there is more than one define element with that name, then there is a unique value for the combine
attribute for that name. After determining this unique value, the combine attributes are removed. A pair of
definitions

<define name="n">
 p1
</define>
<define name="n">
 p2
</define>

ISO/IEC DIS 19757-2

13© ISO/IEC 2002 – All rights reserved

is combined into

<define name="n">
 <c>
 p1
 p2
 </c>
</define>

where c is the value of the combine attribute. Pairs of definitions are combined until there is exactly one define
element for each name.

Similarly, for each grammar element all start elements are combined together. There shall not be more than one
start element that does not have a combine attribute. If there is a start element that has a combine attribute with
the value choice, there shall not also be a start element that has a combine attribute with the value interleave.

7.19 grammar element

In this rule, the schema is transformed so that its top-level element is grammar and so that it has no other
grammar elements.

Define the in-scope grammar for an element to be the nearest ancestor grammar element. A ref element refers to
a define element if the value of their name attributes is the same and their in-scope grammars are the same. A
parentRef element refers to a define element if the value of their name attributes is the same and the in-scope
grammar of the in-scope grammar of the parentRef element is the same as the in-scope grammar of the define
element. Every ref or parentRef element shall refer to a define element. A grammar shall have a start child
element.

First, transform the top-level pattern p into <grammar><start>p</start></grammar>. Next, rename define
elements so that no two define elements anywhere in the schema have the same name. To rename a define
element, change the value of its name attribute and change the value of the name attribute of all ref and
parentRef elements that refer to that define element. Next, move all define elements to be children of the top-level
grammar element, replace each nested grammar element by the child of its start element and rename each
parentRef element to ref.

7.20 define and ref elements

In this rule, the grammar is transformed so that every element element is the child of a define element, and the
child of every define element is an element element.

First, remove any define element that is not reachable. A define element is reachable if there is reachable ref
element referring to it. A ref element is reachable if it is the descendant of the start element or of a reachable
define element. Now, for each element element that is not the child of a define element, add a define element to
the grammar element, and replace the element element by a ref element referring to the added define element.
The value of the name attribute of the added define element shall be different from value of the name attribute of
all other define elements. The child of the added define element is the element element.

Define a ref element to be expandable if it refers to a define element whose child is not an element element. For
each ref element that is expandable and is a descendant of a start element or an element element, expand it by
replacing the ref element by the child of the define element to which it refers and then recursively expanding any
expandable ref elements in this replacement. This shall not result in a loop. In other words expanding the
replacement of a ref element having a name with value n shall not require the expansion of ref element also
having a name with value n. Finally, remove any define element whose child is not an element element.

7.21 notAllowed element

In this rule, the grammar is transformed so that a notAllowed element occurs only as the child of a start or
element element. An attribute, list, group, interleave, or oneOrMore element that has a notAllowed child element
is transformed into a notAllowed element. A choice element that has two notAllowed child elements is

ISO/IEC DIS 19757-2

14 © ISO/IEC 2002 – All rights reserved

transformed into a notAllowed element. A choice element that has one notAllowed child element is transformed
into its other child element. An except element that has a notAllowed child element is removed. The preceding
transformations are applied repeatedly until none of them is applicable any more. Any define element that is no
longer reachable is removed.

7.22 empty element

In this rule, the grammar is transformed so that an empty element does not occur as a child of a group, interleave,
or oneOrMore element or as the second child of a choice element. A group, interleave or choice element that has
two empty child elements is transformed into an empty element. A group or interleave element that has one
empty child element is transformed into its other child element. A choice element whose second child element is
an empty element is transformed by interchanging its two child elements. A oneOrMore element that has an
empty child element is transformed into an empty element. The preceding transformations are applied repeatedly
until none of them is applicable any more.

8 Simple syntax

After applying all the rules in Clause 7, the schema will match the grammar described by the following EBNF
notation:

grammar ::=
 <grammar> <start> top </start> define* </grammar>
define ::=
 <define name="NCName"> <element> nameClass top </element> </define>
top ::=
 <notAllowed/>
 | pattern
pattern ::=
 <empty/>
 | nonEmptyPattern
nonEmptyPattern ::=
 <text/>
 | <data type="NCName" datatypeLibrary="anyURI"> param* [exceptPattern] </data>
 | <value datatypeLibrary="anyURI" type="NCName" ns="string"> string </value>
 | <list> pattern </list>
 | <attribute> nameClass pattern </attribute>
 | <ref name="NCName"/>
 | <oneOrMore> nonEmptyPattern </oneOrMore>
 | <choice> pattern nonEmptyPattern </choice>
 | <group> nonEmptyPattern nonEmptyPattern </group>
 | <interleave> nonEmptyPattern nonEmptyPattern </interleave>
param ::=
 <param name="NCName"> string </param>
exceptPattern ::=
 <except> pattern </except>
nameClass ::=
 <anyName> [exceptNameClass] </anyName>
 | <nsName ns="string"> [exceptNameClass] </nsName>
 | <name ns="string"> NCName </name>
 | <choice> nameClass nameClass </choice>
exceptNameClass ::=
 <except> nameClass </except>

With this grammar, no elements or attributes are allowed other than those explicitly shown.

ISO/IEC DIS 19757-2

15© ISO/IEC 2002 – All rights reserved

9 Semantics

9.1 Inference rules

This clause defines the semantics of a correct RELAX NG schema that has been transformed into the simple
syntax. The semantics of a RELAX NG schema consist of a specification of what XML documents are valid with
respect to that schema. The semantics are described formally. The formalism uses axioms and inference rules.
Axioms are propositions that are provable unconditionally. An inference rule consists of one or more antecedents
and exactly one consequent. An antecedent is either positive or negative. If all the positive antecedents of an
inference rule are provable and none of the negative antecedents are provable, then the consequent of the
inference rule is provable. An XML document is valid with respect to a RELAX NG schema if and only if the
proposition that the element representing it in the data model is valid is provable in the formalism specified in this
clause.

NOTE This kind of formalism is similar to a proof system. However, a traditional proof system only has positive
antecedents.

The notation for inference rules separates the antecedents from the consequent by a horizontal line: the
antecedents are above the line; the consequent is below the line. If an antecedent is of the form not(p), then it is a
negative antecedent; otherwise, it is a positive antecedent. Both axioms and inferences rules may use variables.
A variable has a name and optionally a subscript. The name of a variable is italicized. Each variable has a range
that is determined by its name. Axioms and inference rules are implicitly universally quantified over the variables
they contain. We explain this further below.

The possibility that an inference rule or axiom may contain more than one occurrence of a particular variable
requires that an identity relation be defined on each kind of object over which a variable can range. The identity
relation for all kinds of object is value-based. Two objects of a particular kind are identical if the constituents of the
objects are identical. For example, two attributes are considered the same if they have the same name and the
same value. Two characters are identical if their Unicode character codes are the same.

9.2 Name classes

The main semantic concept for name classes is that of a name belonging to a name class. A name class is an
element that matches the production nameClass. A name is as defined in Clause 5: it consists of a namespace
URI and a local name.

The first axiom is called (anyName 1):

(anyName 1) n in <anyName/>

This says for any name n, n belongs to the name class <anyName/>, in other words <anyName/> matches any
name. Note the effect of the implicit universal quantification over the variables in the axiom: this is what makes
the axiom apply for any name n.

The first inference rule is almost as simple:

(anyName 2)
not(n in nc)

n in <anyName> <except> nc </except> </anyName>

This says that for any name n and for any name class nc, if n does not belong to nc, then n belongs to
<anyName> <except> nc </except> </anyName>. In other words, <anyName> <except> nc </except> </
anyName> matches any name that does not match nc.

The remaining axioms and inference rules for name classes are as follows:

(nsName 1) name(u, ln) in <nsName ns="u"/>

(nsName 2)
not(name(u, ln) in nc)

name(u, ln) in <nsName ns="u"> <except> nc </except> </nsName>

ISO/IEC DIS 19757-2

16 © ISO/IEC 2002 – All rights reserved

(name) name(u, ln) in <name ns="u"> ln </name>

(name choice 1)
n in nc1

n in <choice> nc1 nc2 </choice>

(name choice 2)
n in nc2

n in <choice> nc1 nc2 </choice>

9.3 Patterns

9.3.1 choice pattern

The semantics of the choice pattern are as follows:

(choice 1)
cx ⊦ a; m =~ p1

cx ⊦ a; m =~ <choice> p1 p2 </choice>

(choice 2)
cx ⊦ a; m =~ p2

cx ⊦ a; m =~ <choice> p1 p2 </choice>

9.3.2 group pattern

The semantics of the group pattern are as follows:

(group)
cx ⊦ a1; m1 =~ p1 cx ⊦ a2; m2 =~ p2

cx ⊦ a1 + a2; m1, m2 =~ <group> p1 p2 </group>

NOTE The restriction in 10.4 ensures that the set of attributes constructed in the consequent will not have multiple
attributes with the same name.

9.3.3 empty pattern

The semantics of the empty pattern are as follows:

(empty) cx ⊦ { }; () =~ <empty/>

9.3.4 text pattern

The semantics of the text pattern are as follows:

(text 1) cx ⊦ { }; () =~ <text/>

(text 2)
cx ⊦ { }; m =~ <text/>

cx ⊦ { }; m, s =~ <text/>

The effect of the above rule is that a text element matches zero or more strings.

9.3.5 oneOrMore pattern

The semantics of the oneOrMore pattern are as follows:

(oneOrMore 1)
cx ⊦ a; m =~ p

cx ⊦ a; m =~ <oneOrMore> p </oneOrMore>

(oneOrMore 2)
cx ⊦ a1; m1 =~ p cx ⊦ a2; m2 =~ <oneOrMore> p </oneOrMore> disjoint(a1, a2)

cx ⊦ a1 + a2; m1, m2 =~ <oneOrMore> p </oneOrMore>

ISO/IEC DIS 19757-2

17© ISO/IEC 2002 – All rights reserved

9.3.6 interleave pattern

The semantics of interleaving are defined by the following rules.

(interleaves 1) () interleaves (); ()

(interleaves 2)
m1 interleaves m2; m3

m4, m1 interleaves m4, m2; m3

(interleaves 3)
m1 interleaves m2; m3

m4, m1 interleaves m2; m4, m3

For example, the interleavings of <a/><a/> and are <a/><a/>, <a/><a/>, and <a/><a/>.

The semantics of the interleave pattern are as follows:

(interleave)
cx ⊦ a1; m1 =~ p1 cx ⊦ a2; m2 =~ p2 m3 interleaves m1; m2

cx ⊦ a1 + a2; m3 =~ <interleave> p1 p2 </interleave>

NOTE The restriction in 10.4 ensures that the set of attributes constructed in the consequent will not have multiple
attributes with the same name.

9.3.7 element and attribute pattern

The value of an attribute is always a single string, which may be empty. Thus, the empty sequence is not a
possible attribute value. On the hand, the children of an element can be an empty sequence and cannot consist
of an empty string. In order to ensure that validation handles attributes and elements consistently, a variant of
matching called weak matching is used. Weak matching is used when matching the pattern for the value of an
attribute or for the attributes and children of an element.

The semantics of weak matching are as follows:

(weak match 1)
cx ⊦ a; m =~ p

cx ⊦ a; m =~weak p

(weak match 2)
cx ⊦ a; () =~ p

cx ⊦ a; ws =~weak p

(weak match 3)
cx ⊦ a; "" =~ p

cx ⊦ a; () =~weak p

The semantics of the attribute pattern are as follows:

(attribute)
cx ⊦ { }; s =~weak p n in nc

cx ⊦ attribute(n, s); () =~ <attribute> nc p </attribute>

The semantics of the element pattern are as follows:

(element)
cx1 ⊦ a; m =~weak p n in nc okAsChildren(m) deref(ln) = <element> nc p </element>

cx2 ⊦ { }; ws1, element(n, cx1, a, m), ws2 =~ <ref name="ln"/>

9.3.8 data and value pattern

RELAX NG relies on datatype libraries to perform datatyping. A datatype library is identified by a URI. A datatype
within a datatype library is identified by an NCName. A datatype library provides two services.

ISO/IEC DIS 19757-2

18 © ISO/IEC 2002 – All rights reserved

— It can determine whether a string is a legal representation of a datatype. This service accepts a list of zero or
more parameters. For example, a string datatype might have a parameter specifying the length of a string.
The datatype library determines what parameters are applicable for each datatype.

— It can determine whether two strings represent the same value of a datatype. This service does not have any
parameters.

Both services may make use of the context of a string. For example, a datatype representing a QName would use
the namespace map.

The datatypeEqual function shall be reflexive, transitive and symmetric, that is, the following inference rules shall
hold:

(datatypeEqual reflexive)
datatypeAllows(u, ln, params, s, cx)

datatypeEqual(u, ln, s, cx, s, cx)

(datatypeEqual transitive)
datatypeEqual(u, ln, s1, cx1, s2, cx2) datatypeEqual(u, ln, s2, cx3, s3, cx3)

datatypeEqual(u, ln, s1, cx1, s3, cx3)

(datatypeEqual symmetric)
datatypeEqual(u, ln, s1, cx1, s2, cx2)
datatypeEqual(u, ln, s2, cx2, s1, cx1)

The semantics of the data and value patterns are as follows:

(value)
datatypeEqual(u1, ln, s1, cx1, s2, context(u2, cx2))

cx1 ⊦ { }; s1 =~ <value datatypeLibrary="u1" type="ln" ns="u2" [cx2]> s2 </value>

(data 1)
datatypeAllows(u, ln, params, s, cx)

cx ⊦ { }; s =~ <data datatypeLibrary="u" type="ln"> params </data>

(data 2)
datatypeAllows(u, ln, params, s, cx) not(cx ⊦ a; s =~ p)

cx ⊦ { }; s =~ <data datatypeLibrary="u" type="ln"> params <except> p </except> </data>

9.3.9 Built-in datatype library

The empty URI identifies a special built-in datatype library. This provides two datatypes, string and token. No
parameters are allowed for either of these datatypes.

The semantics of the two built-in datatypes are as follows:

(string allows) datatypeAllows("", "string", (), s, cx)

(string equal) datatypeEqual("", "string", s, cx1, s, cx2)

(token allows) datatypeAllows("", "token", (), s, cx)

(token equal)
normalizeWhiteSpace(s1) = normalizeWhiteSpace(s2)

datatypeEqual("", "token", s1, cx1, s2, cx2)

9.3.10 list pattern

The semantics of the list pattern are as follows:

(list)
cx ⊦ { }; split(s) =~ p

cx ⊦ { }; s =~ <list> p </list>

ISO/IEC DIS 19757-2

19© ISO/IEC 2002 – All rights reserved

NOTE It is crucial in the above inference rule that the sequence that is matched against a pattern can contain
consecutive strings.

9.4 Validity

An element is valid with respect to a schema if the element together with an empty set of attributes it matches the
start pattern of the schema's grammar.

(valid)
start() = p cx ⊦ { }; e =~ p

valid(e)

10 Restrictions

10.1 General

The following constraints are all checked after the grammar has been transformed to the simple form described in
Clause 8.

NOTE The purpose of these restrictions is to catch user errors and to facilitate implementation.

10.2 Prohibited paths

10.2.1 General

This clause describes restrictions on where elements are allowed in the schema based on the names of the
ancestor elements. The concept of a prohibited path is used to describe these restrictions. A path is a sequence
of NCNames separated by / or //.

— An element matches a path x, where x is an NCName, if and only if the local name of the element is x

— An element matches a path x/p, where x is an NCName and p is a path, if and only if the local name of the
element is x and the element has a child that matches p

— An element matches a path x//p, where x is an NCName and p is a path, if and only if the local name of the
element is x and the element has a descendant that matches p

For example, the element

<foo>
 <bar>
 <baz/>
 </bar>
</foo>

matches the paths foo, foo/bar, foo//bar, foo//baz, foo/bar/baz, foo/bar//baz and foo//bar/baz, but not foo/baz or
foobar.

A correct RELAX NG schema shall be such that, after transformation to the simple form, it does not contain any
element that matches a prohibited path.

10.2.2 attribute pattern

The following paths are prohibited:

— attribute//ref

— attribute//attribute

ISO/IEC DIS 19757-2

20 © ISO/IEC 2002 – All rights reserved

10.2.3 oneOrMore pattern

The following paths are prohibited:

— oneOrMore//group//attribute

— oneOrMore//interleave//attribute

10.2.4 list pattern

The following paths are prohibited:

— list//list

— list//ref

— list//attribute

— list//text

— list//interleave

10.2.5 except element in data pattern

The following paths are prohibited:

— data/except//attribute

— data/except//ref

— data/except//text

— data/except//list

— data/except//group

— data/except//interleave

— data/except//oneOrMore

— data/except//empty

NOTE This implies that an except element with a data parent can contain only data, value and choice elements.

10.2.6 start element

The following paths are prohibited:

— start//attribute

— start//data

— start//value

— start//text

— start//list

— start//group

ISO/IEC DIS 19757-2

21© ISO/IEC 2002 – All rights reserved

— start//interleave

— start//oneOrMore

— start//empty

10.3 String sequences

RELAX NG does not allow a pattern such as:

<element name="foo">
 <group>
 <data type="int"/>
 <element name="bar">
 <empty/>
 </element>
 </group>
</element>

Nor does it allow a pattern such as:

<element name="foo">
 <group>
 <data type="int"/>
 <text/>
 </group>
</element>

More generally, if the pattern for the content of an element or attribute contains

— a pattern that can match a child (that is, an element, data, value, list or text pattern), and

— a pattern that matches a single string (that is, a data, value or list pattern),

then the two patterns shall be alternatives to each other.

This rule does not apply to patterns occurring within a list pattern.

To formalize this, the concept of a content-type is used. A pattern that is allowable as the content of an element
has one of three content-types: empty, complex and simple.

The empty content-type is groupable with anything. In addition, the complex content-type is groupable with the
complex content-type. The following rules formalize this.

(group empty 1) groupable(empty(), ct)

(group empty 2) groupable(ct, empty())

(group complex) groupable(complex(), complex())

Some patterns have a content-type. The following rules define when a pattern has a content-type and, if so, what
it is.

(value) <value datatypeLibrary="u1" type="ln" ns="u2"> s </value> :c simple()

(data 1) <data datatypeLibrary="u" type="ln"> params </data> :c simple()

ISO/IEC DIS 19757-2

22 © ISO/IEC 2002 – All rights reserved

(data 2)
p :c ct

<data datatypeLibrary="u" type="ln"> params <except> p </except> </data> :c simple()

(list) <list> p </list> :c simple()

(text) <text/> :c complex()

(ref) <ref name="ln"/> :c complex()

(empty) <empty/> :c empty()

(attribute)
p :c ct

<attribute> nc p </attribute> :c empty()

(group)
p1 :c ct1 p2 :c ct2 groupable(ct1, ct2)
<group> p1 p2 </group> :c max(ct1, ct2)

(interleave)
p1 :c ct1 p2 :c ct2 groupable(ct1, ct2)

<interleave> p1 p2 </interleave> :c max(ct1, ct2)

(oneOrMore)
p :c ct groupable(ct, ct)

<oneOrMore> p </oneOrMore> :c ct

(choice)
p1 :c ct1 p2 :c ct2

<choice> p1 p2 </choice> :c max(ct1, ct2)

NOTE The antecedent in the (data 2) rule above is in fact redundant because of the prohibited paths in 10.2.5.

Now the restriction can be described. All patterns occurring as the content of an element pattern shall have a
content-type.

(element)
deref(ln) = <element> nc p </element> not(p :c ct)

incorrectSchema()

10.4 Restrictions on attributes

Duplicate attributes are not allowed. More precisely, for a pattern <group> p1 p2 </group> or <interleave> p1 p2 </
interleave>, there shall not be a name that belongs to both the name class of an attribute pattern occurring in p1
and the name class of an attribute pattern occurring in p2. A pattern p1 is defined to occur in a pattern p2 if

— p1 is p2, or

— p2 is a choice, interleave, group or oneOrMore element and p1 occurs in one or more children of p2.

Attributes using infinite name classes shall be repeated. More precisely, an attribute element that has an
anyName or nsName descendant element shall have a oneOrMore ancestor element.

NOTE This restriction is necessary for closure under negation.

10.5 Restrictions on interleave

In order to facilitate implementation, an element of a particular name shall be allowed by at most one operand of
an interleave pattern; similarly, a text pattern shall occur in at most one operand of an interleave pattern. More
precisely, for a pattern <interleave> p1 p2 </interleave>,

ISO/IEC DIS 19757-2

23© ISO/IEC 2002 – All rights reserved

— there shall not be a name that belongs to both the name class of an element pattern referenced by a ref
pattern occurring in p1 and the name class of an element pattern referenced by a ref pattern occurring in p2,
and

— a text pattern shall not occur in both p1 and p2.

10.4 defines when one pattern is considered to occur in another pattern.

11 Conformance

A conforming RELAX NG validator shall be able to determine for any XML document whether it is a correct
RELAX NG schema. A conforming RELAX NG validator shall be able to determine for any XML document and for
any correct RELAX NG schema whether the document is valid with respect to the schema.

However, the requirements in the preceding paragraph do not apply if the schema uses a datatype library that the
validator does not support. A conforming RELAX NG validator is only required to support the built-in datatype
library described in 9.3.9. A validator that claims conformance to RELAX NG should document which datatype
libraries it supports. The requirements in the preceding paragraph also do not apply if the schema includes
externalRef or include elements and the validator is unable to retrieve the resource identified by the URI or is
unable to construct an element from the retrieved resource. A validator that claims conformance to RELAX NG
should document its capabilities for handling URI references.

ISO/IEC DIS 19757-2

24 © ISO/IEC 2002 – All rights reserved

Annex A
(normative)

RELAX NG schema for RELAX NG

A correct RELAX NG schema shall be valid with respect to the following schema.

<grammar datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes"
 ns="http://relaxng.org/ns/structure/1.0"
 xmlns="http://relaxng.org/ns/structure/1.0">

 <start>
 <ref name="pattern"/>
 </start>

 <define name="pattern">
 <choice>
 <element name="element">
 <choice>
 <attribute name="name">
 <data type="QName"/>
 </attribute>
 <ref name="open-name-class"/>
 </choice>
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="attribute">
 <ref name="common-atts"/>
 <choice>
 <attribute name="name">
 <data type="QName"/>
 </attribute>
 <ref name="open-name-class"/>
 </choice>
 <interleave>
 <ref name="other"/>
 <optional>
 <ref name="pattern"/>
 </optional>
 </interleave>
 </element>
 <element name="group">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="interleave">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="choice">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="optional">
 <ref name="common-atts"/>

ISO/IEC DIS 19757-2

25© ISO/IEC 2002 – All rights reserved

 <ref name="open-patterns"/>
 </element>
 <element name="zeroOrMore">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="oneOrMore">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="list">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="mixed">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 <element name="ref">
 <attribute name="name">
 <data type="NCName"/>
 </attribute>
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="parentRef">
 <attribute name="name">
 <data type="NCName"/>
 </attribute>
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="empty">
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="text">
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="value">
 <optional>
 <attribute name="type">
 <data type="NCName"/>
 </attribute>
 </optional>
 <ref name="common-atts"/>
 <text/>
 </element>
 <element name="data">
 <attribute name="type">
 <data type="NCName"/>
 </attribute>
 <ref name="common-atts"/>
 <interleave>
 <ref name="other"/>
 <group>
 <zeroOrMore>
 <element name="param">
 <attribute name="name">

ISO/IEC DIS 19757-2

26 © ISO/IEC 2002 – All rights reserved

 <data type="NCName"/>
 </attribute>
 <ref name="common-atts"/>
 <text/>
 </element>
 </zeroOrMore>
 <optional>
 <element name="except">
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 </optional>
 </group>
 </interleave>
 </element>
 <element name="notAllowed">
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="externalRef">
 <attribute name="href">
 <data type="anyURI"/>
 </attribute>
 <ref name="common-atts"/>
 <ref name="other"/>
 </element>
 <element name="grammar">
 <ref name="common-atts"/>
 <ref name="grammar-content"/>
 </element>
 </choice>
 </define>

 <define name="grammar-content">
 <interleave>
 <ref name="other"/>
 <zeroOrMore>
 <choice>
 <ref name="start-element"/>
 <ref name="define-element"/>
 <element name="div">
 <ref name="common-atts"/>
 <ref name="grammar-content"/>
 </element>
 <element name="include">
 <attribute name="href">
 <data type="anyURI"/>
 </attribute>
 <ref name="common-atts"/>
 <ref name="include-content"/>
 </element>
 </choice>
 </zeroOrMore>
 </interleave>
 </define>

 <define name="include-content">
 <interleave>
 <ref name="other"/>
 <zeroOrMore>

ISO/IEC DIS 19757-2

27© ISO/IEC 2002 – All rights reserved

 <choice>
 <ref name="start-element"/>
 <ref name="define-element"/>
 <element name="div">
 <ref name="common-atts"/>
 <ref name="include-content"/>
 </element>
 </choice>
 </zeroOrMore>
 </interleave>
 </define>

 <define name="start-element">
 <element name="start">
 <ref name="combine-att"/>
 <ref name="common-atts"/>
 <ref name="open-pattern"/>
 </element>
 </define>

 <define name="define-element">
 <element name="define">
 <attribute name="name">
 <data type="NCName"/>
 </attribute>
 <ref name="combine-att"/>
 <ref name="common-atts"/>
 <ref name="open-patterns"/>
 </element>
 </define>

 <define name="combine-att">
 <optional>
 <attribute name="combine">
 <choice>
 <value>choice</value>
 <value>interleave</value>
 </choice>
 </attribute>
 </optional>
 </define>

 <define name="open-patterns">
 <interleave>
 <ref name="other"/>
 <oneOrMore>
 <ref name="pattern"/>
 </oneOrMore>
 </interleave>
 </define>

 <define name="open-pattern">
 <interleave>
 <ref name="other"/>
 <ref name="pattern"/>
 </interleave>
 </define>

 <define name="name-class">
 <choice>

ISO/IEC DIS 19757-2

28 © ISO/IEC 2002 – All rights reserved

 <element name="name">
 <ref name="common-atts"/>
 <data type="QName"/>
 </element>
 <element name="anyName">
 <ref name="common-atts"/>
 <ref name="except-name-class"/>
 </element>
 <element name="nsName">
 <ref name="common-atts"/>
 <ref name="except-name-class"/>
 </element>
 <element name="choice">
 <ref name="common-atts"/>
 <ref name="open-name-classes"/>
 </element>
 </choice>
 </define>

 <define name="except-name-class">
 <interleave>
 <ref name="other"/>
 <optional>
 <element name="except">
 <ref name="open-name-classes"/>
 </element>
 </optional>
 </interleave>
 </define>

 <define name="open-name-classes">
 <interleave>
 <ref name="other"/>
 <oneOrMore>
 <ref name="name-class"/>
 </oneOrMore>
 </interleave>
 </define>

 <define name="open-name-class">
 <interleave>
 <ref name="other"/>
 <ref name="name-class"/>
 </interleave>
 </define>

 <define name="common-atts">
 <optional>
 <attribute name="ns"/>
 </optional>
 <optional>
 <attribute name="datatypeLibrary">
 <data type="anyURI"/>
 </attribute>
 </optional>
 <zeroOrMore>
 <attribute>
 <anyName>
 <except>
 <nsName/>

ISO/IEC DIS 19757-2

29© ISO/IEC 2002 – All rights reserved

 <nsName ns=""/>
 </except>
 </anyName>
 </attribute>
 </zeroOrMore>
 </define>

 <define name="other">
 <zeroOrMore>
 <element>
 <anyName>
 <except>
 <nsName/>
 </except>
 </anyName>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 <ref name="any"/>
 </choice>
 </zeroOrMore>
 </element>
 </zeroOrMore>
 </define>

 <define name="any">
 <element>
 <anyName/>
 <zeroOrMore>
 <choice>
 <attribute>
 <anyName/>
 </attribute>
 <text/>
 <ref name="any"/>
 </choice>
 </zeroOrMore>
 </element>
 </define>

</grammar>

ISO/IEC DIS 19757-2

30 © ISO/IEC 2002 – All rights reserved

Annex B
(informative)

Examples

B.1 Data model

Suppose the document http://www.example.com/doc.xml is as follows:

<?xml version="1.0"?>
<foo><pre1:bar1 xmlns:pre1="http://www.example.com/n1"/><pre2:bar2
 xmlns:pre2="http://www.example.com/n2"/></foo>

The element representing this document has

— a name which has

— the empty string as the namespace URI, representing the absence of any namespace

— foo as the local name

— a context which has

— http://www.example.com/doc.xml as the base URI

— a namespace map which

— maps the prefix xml to the namespace URI http://www.w3.org/XML/1998/namespace (the xml prefix
is implicitly declared by every XML document)

— specifies the empty string as the default namespace URI

— an empty set of attributes

— a sequence of children consisting of an element which has

— a name which has

— http://www.example.com/n1 as the namespace URI

— bar1 as the local name

— a context which has

— http://www.example.com/doc.xml as the base URI

— a namespace map which

— maps the prefix pre1 to the namespace URI http://www.example.com/n1

— maps the prefix xml to the namespace URI http://www.w3.org/XML/1998/namespace

— specifies the empty string as the default namespace URI

— an empty set of attributes

ISO/IEC DIS 19757-2

31© ISO/IEC 2002 – All rights reserved

— an empty sequence of children

followed by an element which has

— a name which has

— http://www.example.com/n2 as the namespace URI

— bar2 as the local name

— a context which has

— http://www.example.com/doc.xml as the base URI

— a namespace map which

— maps the prefix pre2 to the namespace URI http://www.example.com/n2

— maps the prefix xml to the namespace URI http://www.w3.org/XML/1998/namespace

— specifies the empty string as the default namespace URI

— an empty set of attributes

— an empty sequence of children

B.2 Full syntax example

Here is an example of a schema in the full syntax for the document in B.1.

<?xml version="1.0"?>
<element name="foo"
 xmlns="http://relaxng.org/ns/structure/1.0"
 xmlns:a="http://relaxng.org/ns/annotation/1.0"
 xmlns:ex1="http://www.example.com/n1"
 xmlns:ex2="http://www.example.com/n2">
 <a:documentation>A foo element.</a:documentation>
 <element name="ex1:bar1">
 <empty/>
 </element>
 <element name="ex2:bar2">
 <empty/>
 </element>
</element>

B.3 Simple syntax example

The schema in B.2 could be transformed into the simple syntax:

<?xml version="1.0"?>
<grammar xmlns="http://relaxng.org/ns/structure/1.0">
 <start>
 <ref name="foo.element"/>
 </start>

 <define name="foo.element">
 <element>
 <name ns="">foo</name>
 <group>

ISO/IEC DIS 19757-2

32 © ISO/IEC 2002 – All rights reserved

 <ref name="bar1.element"/>
 <ref name="bar2.element"/>
 </group>
 </element>
 </define>

 <define name="bar1.element">
 <element>
 <name ns="http://www.example.com/n1">bar1</name>
 <empty/>
 </element>
 </define>

 <define name="bar2.element">
 <element>
 <name ns="http://www.example.com/n2">bar2</name>
 <empty/>
 </element>
 </define>
</grammar>

NOTE Strictly speaking, the result of simplification is an element in the data model rather than an XML document. For
convenience, an XML document is used to represent an element in the data model.

B.4 Validation example

Let e0 be

element(name("", "foo"), cx0, { }, m)

where m is

e1, e2

and e1 is

element(name("http://www.example.com/n1", "bar1"), cx1, { }, ())

and e2 is

element(name("http://www.example.com/n2", "bar2"), cx2, { }, ())

Assuming appropriate definitions of cx0, cx1 and cx2, this represents the document in B.1.

We now show how e0 can be shown to be valid with respect to the schema in B.3. The schema is equivalent to
the following propositions:

start() = <ref name="foo"/>

deref("foo.element") = <element> <name ns=""> "foo" </name> <group> <ref name="bar1"/> <ref
name="bar2"/> </group> </element>

deref("bar1.element") = <element> <name ns="http://www.example.com/n1"> "bar1" </name> <empty/> </
element>

deref("bar2.element") = <element> <name ns="http://www.example.com/n2"> "bar2" </name> <empty/> </
element>

ISO/IEC DIS 19757-2

33© ISO/IEC 2002 – All rights reserved

Let name class nc1 be

<name ns="http://www.example.com/n1"> "bar1" </name>

and let nc2 be

<name ns="http://www.example.com/n2"> "bar2" </name>

Then, by the inference rule (name) in 9.2, we have

name("http://www.example.com/n1", "bar1") in nc1

and

name("http://www.example.com/n2", "bar2") in nc2

By the inference rule (empty) in 9.3.3, we have

cx1 ⊦ { }; () =~ <empty/>

and

cx2 ⊦ { }; () =~ <empty/>

Thus by the inference rule (element) in 9.3.7, we have

cx0 ⊦ { }; e1 =~ <ref name="bar1"/>

Note that we have chosen cx0, since any context is allowed.

Likewise, we have

cx0 ⊦ { }; e2 =~ <ref name="bar2"/>

By the inference rule (group) in 9.3.1, we have

cx0 ⊦ { }; e1, e2 =~ <group> <ref name="bar1"/> <ref name="bar2"/> </group>

By the inference rule (element) in 9.3.7, we have

cx3 ⊦ { }; element(name("", "foo"), cx0, { }, m) =~ <ref name="foo"/>

Here cx3 is an arbitrary context.

Thus we can apply the inference rule (valid) in 9.4 and obtain

valid(e0)

ISO/IEC DIS 19757-2

34 © ISO/IEC 2002 – All rights reserved

Bibliography

[1] RELAX NG Specification, OASIS Committee Specification, 3 December 2001, available at <http://www.
oasis-open.org/committees/relax-ng/tutorial-20011203.html>

[2] RELAX NG Tutorial, OASIS Committee Specification, 3 December 2001, available at <http://www.oasis-
open.org/committees/relax-ng/spec-20011203.html>

http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.oasis-open.org/committees/relax-ng/tutorial-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html
http://www.oasis-open.org/committees/relax-ng/spec-20011203.html

