
http://www.isotopicmaps.org slide 1

Topic Maps Query Language 0.11
Washington DC, November 14, 2004

Tutorial

http://www.isotopicmaps.org slide 2

So, what are we doing?

� Tutorial in TMQL as it currently stands

� We have a working draft describing a TMQL

� we just don't think it's ready for publication

� The Tokyo meeting cleared up a number of things

� the editors now understand each other sufficiently to be able to teach the
language (which is progress :-)

http://www.isotopicmaps.org slide 3

TMQL – the big picture

� TMQL has three kinds of queries

� path expressions, which return single values, sets, or sequences

� select queries, which return tables, and

� FLWR (flower) queries, which return many kinds of things

� Select and FLWR queries can use path expressions

http://www.isotopicmaps.org slide 4

Accuracy

� I think I have understood Robert's parts of this correctly

� However, I don't know that for certain

� So, what I'm presenting here is my view of this, somewhat restated
from Robert's terms

http://www.isotopicmaps.org slide 5

Path expressions

Common sublanguage
Simple expressions

http://www.isotopicmaps.org slide 6

Path expressions

� XPath-like common sublanguage for all TMQL parts

� Works like this:

� the first subexpression produces a set/sequence of values,

� after this come the steps, which apply operations to the set/sequence to
produce a new one

� the steps are chained in a sequence

� the end result is the set/sequence produced by the last step

http://www.isotopicmaps.org slide 7

Typical first step

� $m

� reference to variable 'm' sent as a parameter to the query

� the result of this is the topic map itself (that is, the node representing it)

Robert likes this approach; personally I'd prefer
to avoid the variable, and instead have the topic
map be implicit

http://www.isotopicmaps.org slide 8

Typical second step

� $m / composer

� the '/' produces all topics and associations in the topic map, then filters them
according to the value produced by the 'composer' expression

� the 'composer' expression evaluates to the composer topic

� the filtering is by type, so the result is all topics of type 'composer' (or some
subtype thereof)

Robert and I both like this bit :-)

http://www.isotopicmaps.org slide 9

Three typical steps

� $m / composer # date-of-birth

� the '#' produces all topic names and occurrences of the topics produced by
'$m / composer', then filters them by type so that only the date-of-birth
occurrences remain

� $t # date-of-birth

� same as above, but starting from a variable '$t' containing a topic

� puccini # date-of-birth

� would find Puccini's date of birth

� Robert claims this isn't allowed; LMG not sure document says that, or even
that it should

http://www.isotopicmaps.org slide 10

LMG comments on the '#' operator

� Robert has defined '#' as an expansion to syntax that operates on a
'virtual association' between topics and base name/occurrence

� He has two reasons for this

� one is how he appears to have modelled TMDM using Tau,

� the other is that he thinks having different operators for conceptually different
operations in large path expressions make them easier to read

� Personally, I do not like this

� I feel the operation is the same, and that defining all steps as '/' would be
much cleaner

� I also don't feel the underlying metamodel should be exposed directly

http://www.isotopicmaps.org slide 11

Less typical steps

� $t -> composer \ composed-by / work

� '-> composer' selects the associations in which the topic '$t' plays roles of
type 'composer'

� '\ composed-by' filters out those associations which are of type 'composed-by'

� '/ work' produces all association roles in these associations, then filters them
by type so only the 'work' roles remain, then selects the topic playing those
roles

� in short, the works composed by the topic(s) in '$t'

Not very happy with the '->' operator being different
from the '/' operator. Robert's arguments are readability,
and also that it's doing something different

http://www.isotopicmaps.org slide 12

Filtering with “predicates”

� $m / opera [premiere-date < “1900-01-01”]

� the '[...]' is evaluated relative to the value(s) produced by the expression
before it, and filters out everything for which the expression within it is not true

� in short, this is all operas premiered before 1900

� predicates can be applied to any step

The term “predicate” is (unfortunately) used to
mean both “tolog predicate” and “XPath prediate”,
and these are completely different

http://www.isotopicmaps.org slide 13

Dealing with scope

� $t / @ english

� this will produce any characteristics in the English scope

� $t # bn @ english

� this will only produce base names in the English scope

� $t # oc @ english

� only external occurrences

� $t # rd @ english

� only internal occurrences

http://www.isotopicmaps.org slide 14

Select queries

More complex queries

http://www.isotopicmaps.org slide 15

Basic form

� Select queries take the following form (blue parts being optional)
select ...
from ...
where ...
order by ...
unique
?

Non optional part!

http://www.isotopicmaps.org slide 16

Predicates

� Predicates here take the form
predicate-name (parameter1 , parameter2)

� Parameters can either be literals or variables ($variable)

� Literals constrain the result

� Variables produce results (unless, of course, they are bound already, in which
case they also constrain)

http://www.isotopicmaps.org slide 17

A simple example

� instance-of($A, composer)?

� finds all instances of the 'composer' type (and its subclasses)

� these are bound to the variable $A

� the result is returned as a single-column table with one row per composer

� note that the real syntax is as follows:

� $A : composer?

http://www.isotopicmaps.org slide 18

Treating association types as predicates

� composed-by(puccini : composer, $O : work)?

� find all $Os which have a composed-by association with 'puccini'

� composed-by($C : composer, $O : work)?

� find all composer/work pairs

� composed-by($C : composer, tosca : work)?

� find the composer(s) of the work “tosca”

� composed-by(puccini : composer, tosca : work)?

� is it true that Puccini composed Tosca?

http://www.isotopicmaps.org slide 19

Treating occurrence types as predicates

� $WORK : opera, premiere-date($WORK, $DATE),
$DATE < “1900-01-01”?

� finds first all work/date-combinations, then filters by date

� note that this also demonstrates chaining of predicates

� $WORK : opera, $WORK / premiere-date < “1900-01-01” ?

http://www.isotopicmaps.org slide 20

Expressing alternatives

� $OPERA : opera, {
 composed-by($OPERA : work, puccini : composer) |
 composed-by($OPERA : work, verdi : composer)
}?

� finds all operas composed by Puccini or Verdi

� each branch can contain full predicate lists

http://www.isotopicmaps.org slide 21

Optional clauses

� $OPERA : work, { premiere-date($OPERA, $DATE) }?

� finds all operas and their premiere dates if they have one

� the optional clause can contain any form of predicate list

� select $OPERA, $OPERA / premiere-date where $OPERA : work?

� alternative solution using path expressions

Not sure we need this any more. Leaving it in
for the time being.

http://www.isotopicmaps.org slide 22

Expressing negation

� born-in($PERSON : person, $CITY : place),
not(located-in($CITY : container, italy : containee))?

� not can contain any form of predicate list

http://www.isotopicmaps.org slide 23

Non-existential queries

� Normal parts of select queries match so long as it is true that there
exists something which matches the query

� We also want to be able to say that we want to find things where
every candidate meets some particular condition

� select $TEAM where
 $TEAM : team,
 every team-member($TEAM : team, $PLAYER : member)
 satisfies is-injured($PLAYER : patient)?

� Can also be solved differently

� $TEAM : team,
not(team-member($TEAM : team, $PLAYER : member),
 not(is-injured($PLAYER : patient))?

� that is, find all teams in which there is not (a team member who is not
(injured))

http://www.isotopicmaps.org slide 24

FLWR queries

Even more complex queries

http://www.isotopicmaps.org slide 25

Some background

� FLWR queries are syntactically inspired by XQuery

� The heart of them is predicate lists, like with select queries

� however, the predicate list syntax is different

� it's different because Robert didn't like the select syntax, and I didn't like his

� so feedback on which is the better syntax would be welcome

http://www.isotopicmaps.org slide 26

Basic structure

� The structure of FLWR queries is (optional bits in blue)
for $foo in ..., $bar in ...
for $foo2 in ..., $bar2 in ...
let $baz := ...
let $qux := ...
where ...
return ...
order by ...
unique

http://www.isotopicmaps.org slide 27

RETURN

� return (puccini, puccini # date-of-birth, puccini # date-of-death)

� creates a 3-tuple consisting of the values produced by the path expressions

� this is the result of the query

� In general, RETURN produces the query result

� this can be through projection, like in select expressions

� it can also be generation of XML content or TM results

� the last two not covered by the existing draft

http://www.isotopicmaps.org slide 28

FOR

� FOR creates a loop over the sequence/set of results produced by
the expression after IN

� FOR $composer IN $m / composer
RETURN ($composer # bn, $composer # date-of-birth)

� returns a sequence of 2-tuples, one for each composer

http://www.isotopicmaps.org slide 29

FOR (2)

	 FOR $composer IN $m / composer
FOR $opera IN $composer -> composer \ composed-by / work
RETURN ($composer # bn, $opera # bn)

 returns all composer name, opera name pairs

http://www.isotopicmaps.org slide 30

WHERE

	 FOR $composer IN $m / composer
WHERE composed-by($composer : composer, $opera : work)
RETURN ($composer # bn, $opera # bn)

 identical to previous query

http://www.isotopicmaps.org slide 31

LET

http://www.isotopicmaps.org slide 32

Longer WHERE

� WHERE
 composed-by($OPERA : work, $COMPOSER : composer) AND
 based-on($OPERA : result, $WORK : source) AND
 written-by($WORK : work, $AUTHOR : author)
RETURN
 ($COMPOSER # bn, $AUTHOR # bn)

http://www.isotopicmaps.org slide 33

Declarations

Common to all sub-languages

http://www.isotopicmaps.org slide 34

Declarations

� URI prefix declarations

� Import declarations

� Rule declarations

� Function declarations

