Topic Maps Query Language 0.11

Washington DC, November 14, 2004

Tutorial

http://www.isotopicmaps.org slide 1

0| IEC

So, what are we doing?

* Tutorial in TMQL as it currently stands

 We have a working draft describing a TMQL
— we just don't think it's ready for publication

* The Tokyo meeting cleared up a number of things

— the editors now understand each other sufficiently to be able to teach the
language (which is progress :-)

http://www.isotopicmaps.org slide 2

0| IEC

TMAQL - the big picture

 TMAQL has three kinds of queries
— path expressions, which return single values, sets, or sequences
— select queries, which return tables, and
— FLWR (flower) queries, which return many kinds of things

* Select and FLWR queries can use path expressions

http://www.isotopicmaps.org slide 3

0| IEC

Accuracy

* | think | have understood Robert's parts of this correctly
* However, | don't know that for certain

* So, what I'm presenting here is my view of this, somewhat restated
from Robert's terms

http://www.isotopicmaps.org slide 4

Path expressions

Common sublanguage
Simple expressions

http://www.isotopicmaps.org slide 5

0| 1EC

Path expressions

« XPath-like common sublanguage for all TMQL parts

* Works like this:
— the first subexpression produces a set/sequence of values,

— after this come the steps, which apply operations to the set/sequence to
produce a new one

— the steps are chained in a sequence
— the end result is the set/sequence produced by the last step

http://www.isotopicmaps.org slide 6

0| IEC

Typical first step

° $m
— reference to variable 'm' sent as a parameter to the query
— the result of this is the topic map itself (that is, the node representing it)

Robert likes this approach; personally I'd prefer
to avoid the variable, and instead have the topic
map be implicit

http://www.isotopicmaps.org slide 7

0| IEC

Typical second step

« $m /composer

— the /' produces all topics and associations in the topic map, then filters them
according to the value produced by the ‘composer' expression

— the 'composer' expression evaluates to the composer topic

— the filtering is by type, so the result is all topics of type ‘composer' (or some
subtype thereof)

Robert and | both like this bit :-)

http://www.isotopicmaps.org slide 8

0| 1EC

Three typical steps

* $m/composer # date-of-birth

— the '# produces all topic names and occurrences of the topics produced by

'$m / composer', then filters them by type so that only the date-of-birth
occurrences remain

e $t # date-of-birth

— same as above, but starting from a variable '$t' containing a topic
* puccini # date-of-birth

— would find Puccini's date of birth

— Robert claims this isn't allowed; LMG not sure document says that, or even
that it should

http://www.isotopicmaps.org slide 9

50| lEC

* Robert has defined '#' as an expansion to syntax that operates on a
'virtual association’' between topics and base name/occurrence

LMG comments on the '#' operator

* He has two reasons for this
— one is how he appears to have modelled TMDM using Tau,
— the other is that he thinks having different operators for conceptually different
operations in large path expressions make them easier to read
* Personally, | do not like this

— | feel the operation is the same, and that defining all steps as /' would be
much cleaner

— | also don't feel the underlying metamodel should be exposed directly

http://www.isotopicmaps.org slide 10

0| IEC

Less typical steps

* $t-> composer \ composed-by / work

— '-> composer' selects the associations in which the topic '$t' plays roles of
type 'composer’

— "\ composed-by' filters out those associations which are of type 'composed-by'

— '/ work' produces all association roles in these associations, then filters them

by type so only the 'work' roles remain, then selects the topic playing those
roles

— in short, the works composed by the topic(s) in '$t'

Not very happy with the '->' operator being different
from the '/' operator. Robert's arguments are readability,
and also that it's doing something different

http://www.isotopicmaps.org slide 11

50| lEC

Filtering with “predicates”

« $m/ opera [premiere-date < “1900-01-01"]

— the [...] is evaluated relative to the value(s) produced by the expression
before it, and filters out everything for which the expression within it is not true
— in short, this is all operas premiered before 1900

— predicates can be applied to any step

The term “predicate” is (unfortunately) used to
mean both “tolog predicate” and “XPath prediate”,
and these are completely different

http://www.isotopicmaps.org slide 12

0| IEC

Dealing with scope

 $t/ @ english

— this will produce any characteristics in the English scope
 $t#bn @ english

— this will only produce base names in the English scope

 $t# oc @ english
— only external occurrences

 $t#rd @ english
— only internal occurrences

http://www.isotopicmaps.org slide 13

Select queries

More complex queries

http.//www.isotopicmaps.org slide 14

o IEC

* Select queries take the following form (blue parts being optional)
select ...
f/:/?\renr.e"___ - Non optional part!
order by ...
unique
?

Basic form

http://www.isotopicmaps.org slide 15

0| IEC

Predicates

* Predicates here take the form
predicate-name (parameter1 , parameter2)

 Parameters can either be literals or variables ($variable)
— Literals constrain the result

— Variables produce results (unless, of course, they are bound already, in which
case they also constrain)

http://www.isotopicmaps.org slide 16

0| IEC

A simple example

* instance-of($A, composer)?
— finds all instances of the 'composer' type (and its subclasses)
— these are bound to the variable $A
— the result is returned as a single-column table with one row per composer

* note that the real syntax is as follows:
— $A : composer?

http://www.isotopicmaps.org slide 17

0| IEC

Treating association types as predicates

composed-by(puccini : composer, $O : work)?

— find all $Os which have a composed-by association with 'puccini'
composed-by($C : composer, $0 : work)?

— find all composer/work pairs

composed-by($C : composer, tosca : work)?
— find the composer(s) of the work “tosca”

composed-by(puccini : composer, tosca : work)?
— s it true that Puccini composed Tosca?

http://www.isotopicmaps.org slide 18

0| IEC

Treating occurrence types as predicates

« $WORK : opera, premiere-date($WORK, $DATE),
$DATE < “1900-01-01?

— finds first all work/date-combinations, then filters by date
— note that this also demonstrates chaining of predicates

« $WORK : opera, SWORK / premiere-date < “1900-01-01"?

http://www.isotopicmaps.org slide 19

0| IEC

Expressing alternatives

« $OPERA : opera, {
composed-by($OPERA : work, puccini : composer) |
composed-by($OPERA : work, verdi : composer)
}?
— finds all operas composed by Puccini or Verdi
— each branch can contain full predicate lists

http://www.isotopicmaps.org slide 20

0| IEC

Optional clauses

 $OPERA : work, { premiere-date($OPERA, $DATE) }?
— finds all operas and their premiere dates if they have one
— the optional clause can contain any form of predicate list

« select SOPERA, $OPERA / premiere-date where SOPERA : work?
— alternative solution using path expressions

Not sure we need this any more. Leaving it in
for the time being.

http://www.isotopicmaps.org slide 21

0| IEC

Expressing negation

* born-in($PERSON : person, $CITY : place),
not(located-in($CITY : container, italy : containee))?

— not can contain any form of predicate list

http://www.isotopicmaps.org slide 22

0| IEC

Non-existential queries

* Normal parts of select queries match so long as it is true that there
exists something which matches the query

 We also want to be able to say that we want to find things where
every candidate meets some particular condition

* select $STEAM where
$TEAM : team,
every team-member($TEAM : team, SPLAYER : member)
satisfies is-injured($PLAYER : patient)?

* Can also be solved differently

— $TEAM : team,
not(team-member($TEAM : team, $PLAYER : member),
not(is-injured($PLAYER : patient))?

— thatis, find all teams in which there is not (a team member who is not
(injured))

http://www.isotopicmaps.org slide 23

FLWR queries

Even more complex queries

http://www.isotopicmaps.org slide 24

1EC

r'@\
ISO
sl

Some background

 FLWR queries are syntactically inspired by XQuery

* The heart of them is predicate lists, like with select queries
— however, the predicate list syntax is different
— it's different because Robert didn't like the select syntax, and | didn't like his
— so feedback on which is the better syntax would be welcome

http://www.isotopicmaps.org slide 25

0| IEC

Basic structure

* The structure of FLWR queries is (optional bits in blue)
for $foo in ..., $barin ...
for $foo2 in ..., $bar2in ...
let $baz = ...
let $qux = ...
where ...
return ...
order by ...
unique

http://www.isotopicmaps.org slide 26

50| lEC

* return (puccini, puccini # date-of-birth, puccini # date-of-death)
— creates a 3-tuple consisting of the values produced by the path expressions
— this is the result of the query

RETURN

* In general, RETURN produces the query result
— this can be through projection, like in select expressions
— it can also be generation of XML content or TM results
— the last two not covered by the existing draft

http://www.isotopicmaps.org slide 27

0| IEC

FOR

* FOR creates a loop over the sequence/set of results produced by
the expression after IN

* FOR $composer IN $m / composer
RETURN ($composer # bn, $composer # date-of-birth)

— returns a sequence of 2-tuples, one for each composer

http://www.isotopicmaps.org slide 28

0| IEC

FOR (2)

* FOR $composer IN $m / composer
FOR $opera IN $composer -> composer \ composed-by / work
RETURN ($composer # bn, $opera # bn)

— returns all composer name, opera name pairs

http://www.isotopicmaps.org slide 29

0| 1EC

WHERE

* FOR $composer IN $m / composer
WHERE composed-by($composer : composer, $opera : work)
RETURN ($composer # bn, $opera # bn)

— identical to previous query

http://www.isotopicmaps.org slide 30

LET

http://www.isotopicmaps.org slide 31

0| IEC

Longer WHERE

- WHERE
composed-by($OPERA : work, $COMPOSER : composer) AND
based-on($OPERA : result, SWORK : source) AND
written-by($WORK : work, $AUTHOR : author)
RETURN
($COMPOSER # bn, SAUTHOR # bn)

http://www.isotopicmaps.org slide 32

Declarations

Common to all sub-languages

http://www.isotopicmaps.org slide 33

Declarations

* URI prefix declarations
* Import declarations

* Rule declarations

* Function declarations

http://www.isotopicmaps.org

slide 34

