
Contents Page

Foreword ... iv

Introduction ... v

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1

4 Using Pipelining for Validation Management .. 2
4.1 Validation Management using DPML ... 2
4.1.1 Example of Linear DPML ... 3
4.1.2 Example of Asynchronous DPML ... 7
4.2 Validation Management using Cocoon .. 11
4.3 Validation Management using XPL .. 12

Bibliography .. 16

iii© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialized system for worldwide standardization. National bodies that are members of ISO or IEC participate in
the development of International Standards through technical committees established by the respective organization
to deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 3.

ISO/IEC 19757-10 was prepared by Joint Technical Committee ISO/IEC JTC 1, Information Technology, Subcommittee
SC 34, Document Description and Processing Languages.

ISO/IEC 19757 consists of the following parts, under the general title Document Schema Definition Languages (DSDL):

— Part 1: Overview

— Part 2: Regular-grammar-based validation — RELAX NG

— Part 3: Rule-based validation — Schematron

— Part 4: Namespace-based validation dispatching language — NVDL

— Part 5: Datatypes

— Part 6: Path-based integrity constraints

— Part 7: Character repertoire description language — CRDL

— Part 8: Document schema renaming language — DSRL

— Part 9: Datatype- and namespace-aware DTDs

— Part 10: Validation management

iv © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Introduction

This International Standard defines a set of Document Schema Definition Languages (DSDL) that can be used to
specify one or more validation processes performed against Extensible Markup Language (XML) or Standard
Generalized Markup Language (SGML) documents. (XML is an application profile of SGML — ISO 8879:1986.)

A document model is an expression of the constraints to be placed on the structure and content of documents to be
validated against the model and the information set that needs to be transmitted to subsequent processes. Since the
development of Document Type Definitions (DTDs) as part of ISO 8879, a number of technologies have been developed
through various formal and informal consortia notably by the World Wide Web Consortium (W3C) and the Organization
for the Advancement of Structured Information Standards (OASIS). A number of validation technologies are standardized
in DSDL to complement those already available as standards or from industry.

Historically, when many applications act on a single document, each application inefficiently duplicates the task of
confirming that validation requirements have been met. Furthermore, such tasks and expressions have been developed
and utilized in isolation, without consideration of how the features and functionality available in other technologies
might enhance validation objectives.

The main objective of this International Standard is to bring together different validation-related tasks and expressions
to form a single extensible framework that allows technologies to work in series or in parallel to produce a single or
a set of validation results. The extensibility of DSDL accommodates validation technologies not yet designed or
specified.

In the past, different design and use criteria have led users to choose different validation technologies for different
portions of their information. Bringing together information within a single XML document sometimes prevents existing
document models from being used to validate sections of data. By providing an integrated suite of constraint description
languages that can be applied to different subsets of a single XML document, this International Standard allows
different validation technologies to be integrated under a well-defined validation policy.

This International Standard has the following parts:

— Part 1: Overview

— Part 2: Regular-grammar-based validation — RELAX NG

— Part 3: Rule-based validation — Schematron

— Part 4: Namespace-based validation dispatching language — NVDL

— Part 5: Datatypes

— Part 6: Path-based integrity constraints

— Part 7: Character repertoire description language — CRDL

— Part 8: Document schema renaming language — DSRL

— Part 9: Datatype and namespace-aware DTDs

— Part 10: Validation management

v© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

vi © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Document Schema Definition Languages (DSDL) — Part 10: Validation
Management

1 Scope

This International Standard specifies a suite of technologies that can be used to validate the structure and contents
of structured documents marked up using ISO 8879 (SGML) and its derivatives (e.g. the W3C Extensible Markup
Language, XML).

This International Standard defines a set of semantics for describing and ordering validation rules, a set of syntaxes
for declaring validation rules, and a syntax for defining models for the management of validation sequences. It includes:

— Specifications of relevant validation technologies that can be used in isolation or within the DSDL framework.

— References to validation technologies defined outside of this International Standard that can be used within the
DSDL framework.

— Semantics for managing the sequence in which different validation technologies are to be applied during the
production of validation results.

This technical report illustrates how existing pipelining languages can be used to manage the validation processes.

2 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 19757. For dated references, subsequent amendments to, or revisions of, any of these publications
do not apply. However, parties to agreements based on this part of ISO/IEC 19757 are encouraged to investigate the
possibility of applying the most recent editions of the normative documents indicated below. For undated references,
the latest edition of the normative document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

IETF RFC 2396, Uniform Resource Identifiers (URI): Generic Syntax, Internet Standards Track Specification, August
1998, http://www.ietf.org/rfc/rfc2396.txt

SGML, Standard Generalized Markup Language (SGML), ISO 8879:1986,

UCS, Universal Multiple-Octet Coded Character Set (UCS), ISO/IEC 10646:2000,

W3C XML, Extensible Markup Language (XML) 1.0 (Second Edition), W3C Recommendation, 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

W3C XML-Infoset, XML Information Set, W3C Recommendation, 24 October 2001,
http://www.w3.org/TR/2001/REC-xml-infoset-20011024/

W3C XML-Names, Namespaces in XML, W3C Recommendation, 14 January 1999,
http://www.w3.org/TR/1999/REC-xml-names-19990114/

W3C XPath, XML Path Language (XPath) Version 1.0, W3C Recommendation, 16 November 1999,
http://www.w3.org/TR/1999/REC-xpath-19991116

W3C XML Schema, XML Schema, W3C Recommendation, 24 October 2001,
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/

3 Terms and definitions

3.1 (document) instance

COMMITTEE DRAFT TECHNICAL REPORT ISO/IEC PDTR 19757-10

1© ISO/IEC 2005 – All rights reserved

A structured document that is being validated with respect to a DSDL expression of document model constraints for
structure and content

4 Using Pipelining for Validation Management

For the purpose of generating this first draft for a technical report on the use of existing pipeline techniques for validation
management the following validation tests were proposed:

1. Use NVDL to split out the parts of the document that are encoded using HTML, SVG and MathML from the bulk
of the document, whose tags are defined using a user-defined set of markup tags.

2. Validate the HTML elements and attributes using the HTML 4.0 DTD (W3C XML DTD).

3. Use a set of Schematron rules stored in check-metadata.xml to ensure that the metadata of the HTML
elements defined using Dublin Core semantics conform to the information in the document about the document's
title and subtitle, author, encoding type, etc.

4. Validate the SVG components of the file using the standard W3C schema provided in the SVG 1.2 specification.

5. Use the Schematron rules defined in SVG-subset.xml to ensure that the SVG file only uses those features of
SVG that are valid for the particular SVG viewer available to the system

6. Validate the MathML components using the latest version of the MathML schema (defined using RELAX-NG) to
ensure that all maths fragments are valid. The schema will make use the datatype definitions in check-maths.xml
to validate the contents of specific elements.

7. Use MathML-SVG.xslt to transform the MathML segments to displayable SVG and replace each MathML
fragment with its SVG equivalent.

8. Use the DSRL definitions in convert-mynames.xml to convert the tags in the local name set to the form that
can be used to validate the remaining part of the document using docbook.dtd.

9. Use the CRDL rules defined in mycharacter-checks.xml to validate that the correct character sets have
been used for text identified as being Greek and Cyrillic.

10. Convert the Docbook tags to HTML so that they can be displayed in a web browser using the
docbook-html.xslt transformation rules.

Each validation script should allow the four streams produced by step 1 to be run in parallel without requiring the other
validations to be carried out if there is an error in another stream. This means that steps 2 and 3 should be carried
out in parallel to steps 4 and 5, and/or steps 6 and 7 and/or steps 8 and 9. After completion of step 10 the HTML (both
streams), and SVG (both streams) should be recombined to produce a single stream that can fed to a web browser.
The flow is illustrated in Figure 1.

4.1 Validation Management using DPML

The Declarative Process Markup Language (DPML[1]) is a very simple language for composing NetKernel[2] hosted
services into processes: it is not explicitly an XML pipelining language, rather it is one among many language runtimes
that can be used on NetKernel to build Unix-like applications.

NetKernel treats all software components as URI addressable services and uses a RESTful abstraction to invoke
them. Higher level language runtimes (DPML, XRL, Java, Beanshell, Python, Groovy, Javascript) are used to compose
services into 'pipelines'. DPML uses the term 'process' rather than 'pipeline' as the latter implies a linear synchronous
flow whereas 'process' encompasses asynchronous forks, conditions and loops, etc.

The NetKernel Standard Edition provides a broad set of XML technologies as simple URI addressable services. Using
the higher-level language runtimes the XML technologies can be composed into heterogeneous XML systems.

2 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Figure 1: Pictorial Representation of Test Scenario

DPML is a syntax for constructing URI requests for services. The constructed requests are issued to the NetKernel
infrastructure, which manages execution context, resource management, URI address-spaces, asynchronous execution,
exceptions, etc.

4.1.1 Example of Linear DPML

To understand the DPML syntax you should know that a DPML instruction (<instr>) has two reserved tags:

— <type> is used to identify the base URI for the required service

— <target> is used to identify the resource which will receive the result of the service.

All other tag names are arbitrarily named arguments to be passed to the implementing service on 'active URI' request.

In DPML var: is used to identify transient variable resources managed by the stateful DPML runtime engine. The
special URI 'this:response' is the resource which is finally returned as the result of a process.

On NetKernel the arguments to a service are sourced with URIs of the form this:param:xxxxx. In our examples
we assume an argument 'input' has been passed from the process that is requesting the DSDL pipeline: it is referenced
with 'this:param:input'.

3© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

If any request fails with an exception then the process flow will switch to the first <exception> block at the same
level of cardinality as the instruction which threw the exception. The exception is accessed with the URI
'this:exception' and can be used as an XML resource in an error handling process or thrown to a calling process,
etc. If no exception block is provided the exception will percolate up to the calling parent process.

In this use-case we are assuming that the 'nvdl' service has been written to return a multipart resource. We then use
multipart fragmentation to select the required named parts later in the process.

<idoc>
<seq>
<comment>

1. Use NVDL to split out the parts of the document that
are encoded using HTML, SVG and MathML from the bulk of
the document, whose tags are defined using a user-defined
set of markup tags.

Here we assume that the NVDL service will create a
multipart response containing the 'stripped-out'
resources 'html', 'svg', 'mathml' and 'other' - these
are later accessed by using multipart URI fragmentation.

</comment>
<instr>
<type>nvdl</type>
<source>this:param:input</source>
<rules>nvdl-processing-rules.xml</rules>
<target>var:nvdl-streams</target>
</instr>
<comment>

2. Validate the HTML elements and attributes using the
TML 4.0 DTD (W3C XML DTD).

</comment>
<instr>
<type>validate-DTD</type>
<source>var:nvdl-streams#part(html)</source>
<schema>DTD-schema.dtd</schema>
<target>var:html-validated</target>
</instr>
<comment>

3. Use a set of Schematron rules stored in
check-metadata.xml to ensure that the metadata
of the HTML elements defined using Dublin Core semantics
conform to the information in the document about the
document's title and subtitle, author, encoding type,
etc.

</comment>
<instr>
<type>validate-Schematron</type>
<source>var:html-validated</source>
<schema>check-metadata.xml</schema>
<target>var:html-schematronized</target>
</instr>
<comment>

4. Validate the SVG components of the file using the

4 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

standard W3C schema provided in the SVG 1.2
specification.

</comment>
<instr>
<type>validate-XSD</type>
<source>var:nvdl-streams#part(svg)</source>
<schema>svg-1.2.xsd</schema>
<target>var:svg-validated</target>
</instr>
<comment>

5. Use the Schematron rules defined in SVG-subset.xml to
ensure that the SVG file only uses those features of SVG
that are valid for the particular SVG viewer available
to the system.

</comment>
<instr>
<type>validate-Schematron</type>
<source>var:svg-validated</source>
<schema>SVG-subset.xml</schema>
<target>var:svg-schamatronized</target>
</instr>
<comment>

6. Validate the MathML components using the latest
version of the MathML. schema (defined in RELAX-NG) to
ensure that all maths fragments are valid. The schema
will make use the datatype definitions in
check-maths.xml to validate the contents of specific
elements.

</comment>
<instr>
<type>validate-RelaxNG</type>
<source>var:nvdl-streams#part(mathml)</source>
<schema>mathmld-1.0.rng</schema>
<target>var:mathml-validated</target>
</instr>
<comment>

7. Use MathML-SVG.xslt to transform the MathML segments
to displayable SVG and replace each MathML fragment with
its SVG equivalent.

</comment>
<instr>
<type>transform-XSLT</type>
<source>var:mathml-validated</source>
<transform>MathML-SVG.xslt</transform>
<target>var:mathml-as-svg</target>
</instr>
<comment>

8. Use the DSRL definitions in convert-mynames.xml to
convert the tags in the local nameset to the form that
can be used to validate the remaining part of the
document using docbook.dtd.

5© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

</comment>
<instr>
<type>dsrl</type>
<source>var:nvdl-streams#part(other)</source>
<rules>convert-mynames.xml</rules>
<target>var:docbook</target>
</instr>
<instr>
<type>validate-DTD</type>
<source>var:docbook</source>
<schema>docbook-validation.dtd</schema>
<target>var:docbook-validated</target>
</instr>
<comment>

9. Use the CRDL rules defined in mycharacter-checks.xml
to validate that the correct character sets have been
used for text identified as being Greek and Cyrillic.

Note here we target to the same variable like x=f(x)

</comment>
<instr>
<type>crdl</type>
<source>var:docbook-validated</source>
<crdl-rules>mycharacter-checks.xml</crdl-rules>
<target>var:docbook-validated</target>
</instr>
<comment>

10. Convert the Docbook tags to HTML so that they can be
displayed in a web browser using the docbook-html.xslt
transformation rules.

</comment>
<instr>
<type>transform-XSLT</type>
<source>var:docbook-validated</source>
<transform>docbook-html.xslt</transform>
<target>var:docbook-as-html</target>
</instr>
<comment>

After completion of step 10 the HTML (both streams), and
SVG (both streams) should be recombined to produce a
single stream that can fed to a web browser.

</comment>
<instr>
<type>transform-XSLT</type>
<source>var:docbook-as-html</source>
<transform>stylesheet-to-aggregate-everything.xslt</transform>
<html-param>var:html-schematronized</html-param>
<svg-param>var:svg-schematronized</svg-param>
<mathml-param>var:mathml-as-svg</mathml-param>
<target>this:response</target>
</instr>
<exception>
<comment>

6 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Here we are catching any exception in the
process - we are simply logging it and then
rethrowing it to the process which called us.
We could start the execution of an error
handling process here.

</comment>
<instr>
<type>log</type>
<operand>this:exception</operand>
</instr>
<instr>
<type>throw</type>
<operand>this:exception</operand>
</instr>
</exception>
</seq>
</idoc>

4.1.2 Example of Asynchronous DPML

This example shows the same 'pipeline' as we showed in the previous sub-clause. In this sub-clause it is re-written
using an asynchronous process pattern. Each sub-part of the use-case is executed asynchronously in forked
sub-processes.

To illustrate how XML pipelining is generally not language specific we have written the sub-processes in different
languages: it is frequently very valuable to be able to move back and forth between declarative and procedural
approaches within the same XML process.

In the parent process we are asynchronously invoking sub-processes and passing an argument'parameter' to the
child process. Each child process accesses the argument within their execution context with the URI
'this:param:parameter'; just a named argument on the active URI.

<idoc>
<seq>
<comment>

A. Fork an asynchronous DPML process to process the HTML

</comment>
<instr>
<type>async</type>
<uri>active:dpml</uri>
<operand>html-process.idoc</operand>
<parameter>this:param:input</parameter>
<target>var:html-proc</target>
</instr>
<comment>

B. Fork an asynchronous Beanshell (scripted Java)
process to process the SVG

</comment>
<instr>
<type>async</type>
<uri>active:beanshell</uri>
<operand>svg-process.bsh</operand>
<parameter>this:param:input</parameter>
<target>var:svg-proc</target>

7© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

</instr>
<comment>

C. Fork an asynchronous Python process to process the
MathML

</comment>
<instr>
<type>async</type>
<uri>active:python</uri>
<operand>mathml-process.py</operand>
<parameter>this:param:input</parameter>
<target>var:mathml-proc</target>
</instr>
<comment>

D. Continue with the Docbook processing in this
parent...

</comment>
<comment>

8. Use the DSRL definitions in convert-mynames.xml to
convert the tags in the local nameset to the form that
can be used to validate the remaining part of the
document using docbook.dtd.

</comment>
<instr>
<type>nvdl</type>
<source>this:param:input</source>
<rules>nvdl-docbook-processing-rules.xml</rules>
<target>var:docbook</target>
</instr>
<instr>
<type>dsrl</type>
<source>var:docbook</source>
<rules>convert-mynames.xml</rules>
<target>var:docbook</target>
</instr>
<instr>
<type>validate-DTD</type>
<source>var:docbook</source>
<schema>docbook-validation.dtd</schema>
<target>var:docbook-validated</target>
</instr>
<comment>

9. Use the CRDL rules defined in mycharacter-checks.xml
to validate that the correct character sets have been
used for text identified as being Greek and Cyrillic.
Note here we target to the same variable like x=f(x)

</comment>
<instr>
<type>crdl</type>
<source>var:docbook-validated</source>
<crdl-rules>mycharacter-checks.xml</crdl-rules>
<target>var:docbook-validated</target>
</instr>

8 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

<comment>

10. Convert the Docbook tags to HTML so that they can be displayed
in a web browser using the docbook-html.xslt
transformation rules.

</comment>
<instr>
<type>transform-XSLT</type>
<source>var:docbook-validated</source>
<transform>docbook-html.xslt</transform>
<target>var:docbook-as-html</target>
</instr>
<comment>

E. Rejoin all asynchronous processes...

</comment>
<instr>
<type>join</type>
<operand>var:html-proc</operand>
<target>var:html</target>
</instr>
<instr>
<type>join</type>
<operand>var:svg-proc</operand>
<target>var:svg</target>
</instr>
<instr>
<type>join</type>
<operand>var:mathml-proc</operand>
<target>var:mathml</target>
</instr>
<comment>

After completion of step 10 the HTML (both streams), and
SVG (both streams) should be recombined to produce a
single stream that can fed to a web browser.

</comment>
<instr>
<type>transform-XSLT</type>
<source>var:docbook</source>
<transform>
stylesheet-to-aggregate-everything.xslt
</transform>
<html-param>var:html</html-param>
<svg-param>var:svg</svg-param>
<mathml-param>var:mathml</mathml-param>
<target>this:response</target>
</instr>
<exception>
<comment>

Here we are catching any exception in this
pipeline or any of the asynchronous child
pipelines - we are simply logging it and then
rethrowing it to the process which called this
pipeline. We could start the exectuion of an
error handling process here.

9© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

</comment>
<instr>
<type>log</type>
<operand>this:exception</operand>
</instr>
<instr>
<type>throw</type>
<operand>this:exception</operand>
</instr>
</exception>
</seq>
</idoc>

svg-process.bsh : An SVG Pipeline Process in Beanshell (Scripted Java)
--

main()
{ //Execute NVDL to extract SVG
req=context.createSubRequest();
req.setURI("nvdl");
req.addArgument("source", "this:param:parameter");
req.addArgument("rules", "nvdl-svg-processing-rules.xml");
result=context.issueSubRequest(req);

//Validate with XML Schema
req=context.createSubRequest();
req.setURI("validate-XSD");
req.addArgument("source", result);
req.addArgument("schema", "svg-1.2.xsd");
result=context.issueSubRequest(req);

//Validate with Schematron
req=context.createSubRequest();
req.setURI("validate-Schematron");
req.addArgument("source", result);
req.addArgument("schema", "SVG-subset.xml");
result=context.issueSubRequest(req);

//Issue response
response=context.createResponseFrom(result);
context.setResponse(response);
}

mathml-process.py : A MathML Pipeline Process - in Python

#Execute NVDL to extract MathML
req=context.createSubRequest()
req.setURI("nvdl")
req.addArgument("source", "this:param:parameter")
req.addArgument("rules", "nvdl-mathml-processing-rules.xml")
result=context.issueSubRequest(req)

#Validate with Relax NG
req=context.createSubRequest()
req.setURI("validate-RelaxNG")
req.addArgument("source", result)
req.addArgument("schema", "mathml-1.0.rng")

10 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

result=context.issueSubRequest(req)

#Transform MathML to SVG
req=context.createSubRequest()
req.setURI("transform-XSLT")
req.addArgument("source", result)
req.addArgument("transform", "MathML-SVG.xslt")
result=context.issueSubRequest(req)

#Issue Response
response=context.createResponseFrom(result)
context.setResponse(response)

4.2 Validation Management using Cocoon

The Apache Cocoon Project provides mechanisms that can be used to control the flow of files through data pipelines.
The basic idea behind Cocoon is to identify a set of actions that need to be taken with a file whose location and name
match a specific pattern are requested from an Apache server.

A Cocoon workflow is defined in terms of:

— components

— views

— resources

— action sets

— pipelines

— flows containing scripts.

Cocoon allows users to:

— Generate trees from existing files, databases, programs, etc.

— Match specific file naming patterns, or specific fragments of a file.

— Transform trees by applying XSLT transformations.

— Aggregate data from multiple trees.

— Serialize trees as XML, FOP, HTML, XHTML files, or any other form of output for which a serializer has been
defined.

— Identify exceptions and define error-handling processes.

Documents to be processed using Cocoon can be wrapped in a xsp:page element to create an Extensible Server
Page (XSP). Configuration of Cocoon processes takes place within a "sitemap" (xsp:sitemap) that acts as a wrapper
for a set of component, view and pipelines elements. Multiple pipeline elements and match rules can be defined within
the pipelines element. Matching, which are done against URIs, by can be defined using regular expressions and/or
wildcards.

A typical pipeline might include the following:

 <map:pipeline>
 <map:match pattern="docs/*.html">

11© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

 <map:generate src="docs/*.xml">
 <map:transform src="stylesheet/xml2html.xsl">
 <map:serialize type="html">
 </map:match>
 </map:pipeline>

The fact that Cocoon pipelines can include calls to functions or scripts makes it unsuitable for declarative control of
validation management, which is a goal of DSDL. It is possible, however, to envisage adopting the declarative markup
used to define pipelines within Cocoon as the basis for a subset of Cocoon functionality that could be used for validation
management within DSDL. For example, trees of validated elements could be created using an extension to the
map:generate option, e.g.:

<map:generate type="nvdl" nvdl-rules="rules.nvdl" src="sample.doc"/>

The following example suggests how the DSDL multitrack scenario might be coded using an extended subset of
Cocoon commands:

<map:piplines name="multitrack-validation-example">
 <map:pipeline name="recombine-multiple-tracks">
 <map:pipeline name="check-html">
 <map:generate type="nvdl" rules="test.nvdl" mode="html"
 src="{1)"/>
 <map:transform type="schematron" src="test-html.sch"/>
 </map:pipeline>
 <map:pipeline name="check-svg">
 <map:generate type="nvdl" rules="test.nvdl" mode="svg"
 src="{1)"/>
 <map:transform type="schematron" src="test-svg.sch"/>
 </map:pipeline>
 <map:pipeline name="check-html">
 <map:generate type="mathml" rules="test.nvdl" mode="mathml"
 src="{1)"/>
 <map:transform type="xslt" src="mathml2svg.xsl"/>
 </map:pipeline>
 <map:pipeline name="check-rest">
 <map:generate type="nvdl" rules="test.nvdl" mode="xml"
 src="{1)"/>
 <map:transform type="dsrl" src="rename.dsrl"/>
 <map:generate type="crdl" rules="test-chars.crdl"/>
 <map:transform type="xslt" src="docbook2HTML.xslt"/>
 </map:pipeline>
 <map:serialize type="xhtml"/>
 <map:pipeline>
</map:pipelines>

It should be noted that the use of the outermost pipeline element to recombine the multiple fragments is only conjecture
at this point. It is unclear how the serialized would be able to determine where in the original NVDL input stream each
transformed set of data is to be positioned as NVDL does not uniquely identify fragments.

4.3 Validation Management using XPL

An XML Pipelining Language (XPL[3]) program defines orchestrated sequences of operations on XML Information
Sets (Infosets). Individual operations are encapsulated within components called XML processors. Operations include
production, consumption, and transformation of XML Infosets. An XPL program supports unconditional operations,
and can support conditions, loops and change of control following runtime errors.

An XPL program consists of:

12 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

— Input and output parameters. Each input or output has a name, and may either provide the XPL program with
an XML Infoset (case of an input), or produces an XML Infoset (case of an output). The XPL program may have
no input or output.

— A sequence of statements.

NOTE 1: Some use cases do not require that an XPL program have any inputs or outputs.

An XPL program statement is an element with the following characteristics:

— Scoped XML Infoset Identifiers. A set of XML Infoset identifiers in scope at the point where the statement occurs
in the XPL program. The set may be empty.

— Exposed XML Infoset Identifiers. A set of XML Infoset identifiers exposed by the statement. There cannot be an
intersection between the scoped XML Infoset identifiers and the exposed XML Infoset identifiers. For example,
a statement can attempt to expose an XML Infoset identifier already present in the set of scoped XML Infoset
identifiers. Such a condition must raise a static error. This is referred to as the no-collision rule.

The set of XML Infoset identifiers in scope for a statement of an XPL program, unless specified otherwise, consists
of the union of the identifiers in scope for the previous statement and the identifiers exposed by the previous statement
in document order.

If there is no such previous statement, the set of XML Infoset identifiers in scope for a statement of an XPL program,
unless specified otherwise, consists of the set of identifiers specified by the Infoset attributes of the XPL program
inputs. In other words, this condition applies to the first statement of an XPL program.

The following example suggests how the DSDL multitrack scenario might be coded using XPL:

 <p:config xmlns:p="http://www.orbeon.com/oxf/pipeline"
 xmlns:oxf="http://www.orbeon.com/oxf/processors">

 <p:param name="source-document" type="input"/>
 <p:param name="result-document" type="output"/>

 <!--
 1. Use NVDL to split out the parts of the document that are encoded using HTML, SVG and
 MathML from the bulk of the document, whose tags are defined using a user-defined
 set of markup tags.
 -->
 <p:processor name="oxf:nvdl">
 <p:input name="document" href="#source-document"/>
 <p:input name="rules">
 <rules>
 NVDL rules
 </rules>
 </p:input>
 <p:output name="html-stream" id="html-stream"/>
 <p:output name="svg-stream" id="svg-stream"/>
 <p:output name="mathml-stream" id="mathml-stream"/>
 <p:output name="other-stream" id="other-stream"/>
 </p:processor>

 <!--
 2. Validate the HTML elements and attributes using the HTML 4.0 DTD (W3C XML DTD).
 -->
 <p:processor name="oxf:validation">
 <p:input name="data" href="#html-stream"/>
 <p:input name="schema">
 <!-- Reference to DTD for HTML -->

13© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

 <dtd href="..."/>
 </p:input>
 <p:output name="data" id="html-stream-validated"/>
 </p:processor>

 <!--
 3. Use a set of Schematron rules stored in check-metadata.xml to ensure that the metadata
 of the HTML elements defined using Dublin Core semantics conform to the information in the
 document about the document's title and subtitle, author, encoding type, etc.
 -->
 <p:processor name="oxf:validation">
 <p:input name="data" href="#html-stream-validated"/>
 <!-- Reference to Schematron schema for HTML metadata -->
 <p:input name="schema" href="check-metadata.xml"/>
 <p:output name="data" id="html-stream-schematronized"/>
 <!--

 Note that in the case of Schematron, the data output is identical to the data input.

 -->
 </p:processor>

 <!--
 4. Validate the SVG components of the file using the standard W3C schema provided in the
 SVG 1.2 specification.
 -->
 <p:processor name="oxf:validation">
 <p:input name="data" href="#svg-stream"/>
 <!-- Reference to W3C Schema for SVG -->
 <p:input name="schema" href="svg-1.2.xsd"/>
 <p:output name="data" id="svg-stream-validated"/>
 </p:processor>

 <!--
 5. Use the Schematron rules defined in SVG-subset.xml to ensure that the SVG file only uses
 those features of SVG that are valid for the particular SVG viewer available to the system.
 -->
 <p:processor name="oxf:validation">
 <p:input name="data" href="#svg-stream-validated"/>
 <!-- Reference to Schematron schema for SVG subset -->
 <p:input name="schema" href="SVG-subset.xml"/>
 <p:output name="data" id="svg-stream-schmatronized"/>
 </p:processor>

 <!--
 6. Validate the MathML components using the latest version of the MathML. schema (defined
 in RELAX-NG) to ensure that all maths fragments are valid. The schema will make use the
 datatype definitions in check-maths.xml to validate the contents of specific elements.
 -->
 <p:processor name="oxf:validation">
 <p:input name="data" href="#mathml-stream"/>
 <!-- Reference to Relax NG shema for MathML -->
 <p:input name="schema" href="mathml-1.0.rng"/>
 <p:output name="data" id="mathml-stream-validated"/>
 </p:processor>

 <!--
 7. Use MathML-SVG.xslt to transform the MathML segments to displayable SVG and replace each
 MathML fragment with its SVG equivalent.
 -->

14 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

 <p:processor name="oxf:xslt">
 <p:input name="data" href="#mathml-stream-validated"/>
 <p:input name="config" href="MathML-SVG.xslt"/>
 <p:output name="data" id="mathml-as-svg"/>
 </p:processor>

 <!--
 8. Use the DSRL definitions in convert-mynames.xml to convert the tags in the local nameset
 to the form that can be used to validate the remaining part of the document using
 docbook.dtd.
 -->
 <p:processor name="oxf:dsrl">
 <p:input name="data" href="#other-stream"/>
 <p:input name="config" href="convert-mynames.xml "/>
 <p:output name="data" id="docbook-stream"/>
 </p:processor>

 <p:processor name="oxf:validation">
 <p:input name="data" href="#docbook-stream"/>
 <!-- Reference to DTD Docbook -->
 <p:input name="schema">
 <dtd href="..."/><!-- Reference to W3C DTD -->
 </p:input>
 <p:output name="data" id="docbook-stream-validated"/>
 </p:processor>

 <!--
 9. Use the CRDL rules defined in mycharacter-checks.xml to validate that the correct
 character sets have been used for text identified as being Greek and Cyrillic.
 -->
 <p:processor name="oxf:crdl">
 <p:input name="data" href="#docbook-stream-validated"/>
 <p:input name="config" href="mycharacter-checks.xml "/>
 <p:output name="data" id="docbook-stream-validated-2"/>
 </p:processor>

 <!--
10. Convert the Docbook tags to HTML so that they can be displayed in a web browser using
 the docbook-html.xslt transformation rules.
 -->
 <p:processor name="oxf:xslt">
 <p:input name="data" href="#docbook-stream-validated-2"/>
 <p:input name="config" href="docbook-html.xslt"/>
 <p:output name="data" id="docbook-as-html"/>
 </p:processor>

 <!--
 After completion of step 10 the HTML (both streams), and SVG (both streams) should be
 recombined to produce a single stream that can fed to a web browser.
 -->
 <p:processor name="oxf:xslt">
 <p:input name="data" href="#html-stream-schematronized"/>
 <p:input name="html-2" href="#docbook-as-html"/>
 <p:input name="svg-1" href="#svg-stream-schmatronized"/>
 <p:input name="svg-2" href="#mathml-as-svg"/>
 <p:input name="config" href="stylesheet-to-aggregate-everything.xsl"/>
 <p:output name="data" ref="result-document"/>
 </p:processor>

</p:config>

15© ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

Bibliography

[1] DPML Quick Reference Guide,
http://www.1060research-server-1.co.uk/docs/2.0.2/book/declarative/doc_guide_dpml_quick_reference.html

[2] NetKernel Service Oriented Microkernel XML Application Server,
http://www.1060research.com/netkernel/index.html

[3] XML Pipeline Language (XPL) Version 1.0, http://www.orbeon.com/ops/2005/xpl/

16 © ISO/IEC 2005 – All rights reserved

ISO/IEC PDTR 19757-10

